/* 24 state EKF based on the derivation in https://github.com/PX4/ecl/ blob/master/matlab/scripts/Inertial%20Nav%20EKF/GenerateNavFilterEquations.m Converted from Matlab to C++ by Paul Riseborough This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once #pragma GCC optimize("O2") #define EK3_DISABLE_INTERRUPTS 0 #include #include #include "AP_NavEKF3.h" #include #include #include #include // GPS pre-flight check bit locations #define MASK_GPS_NSATS (1<<0) #define MASK_GPS_HDOP (1<<1) #define MASK_GPS_SPD_ERR (1<<2) #define MASK_GPS_POS_ERR (1<<3) #define MASK_GPS_YAW_ERR (1<<4) #define MASK_GPS_POS_DRIFT (1<<5) #define MASK_GPS_VERT_SPD (1<<6) #define MASK_GPS_HORIZ_SPD (1<<7) // active height source #define HGT_SOURCE_BARO 0 #define HGT_SOURCE_RNG 1 #define HGT_SOURCE_GPS 2 #define HGT_SOURCE_BCN 3 #define earthRate 0.000072921f // earth rotation rate (rad/sec) // maximum allowed gyro bias (rad/sec) #define GYRO_BIAS_LIMIT 0.5f // initial accel bias uncertainty as a fraction of the state limit #define ACCEL_BIAS_LIM_SCALER 0.2f // target update time for the EKF in msec and sec #define EKF_TARGET_DT_MS 12 #define EKF_TARGET_DT 0.012f // mag fusion final reset altitude (using NED frame so altitude is negative) #define EKF3_MAG_FINAL_RESET_ALT 2.5f class AP_AHRS; class NavEKF3_core : public NavEKF_core_common { public: // Constructor NavEKF3_core(NavEKF3 *_frontend); // setup this core backend bool setup_core(uint8_t _imu_index, uint8_t _core_index); // Initialise the states from accelerometer and magnetometer data (if present) // This method can only be used when the vehicle is static bool InitialiseFilterBootstrap(void); // Update Filter States - this should be called whenever new IMU data is available // The predict flag is set true when a new prediction cycle can be started void UpdateFilter(bool predict); // Check basic filter health metrics and return a consolidated health status bool healthy(void) const; // Return a consolidated error score where higher numbers are less healthy // Intended to be used by the front-end to determine which is the primary EKF float errorScore(void) const; // Write the last calculated NE position relative to the reference point (m). // If a calculated solution is not available, use the best available data and return false // If false returned, do not use for flight control bool getPosNE(Vector2f &posNE) const; // Write the last calculated D position relative to the reference point (m). // If a calculated solution is not available, use the best available data and return false // If false returned, do not use for flight control bool getPosD(float &posD) const; // return NED velocity in m/s void getVelNED(Vector3f &vel) const; // Return the rate of change of vertical position in the down direction (dPosD/dt) in m/s // This can be different to the z component of the EKF velocity state because it will fluctuate with height errors and corrections in the EKF // but will always be kinematically consistent with the z component of the EKF position state float getPosDownDerivative(void) const; // This returns the specific forces in the NED frame void getAccelNED(Vector3f &accelNED) const; // return body axis gyro bias estimates in rad/sec void getGyroBias(Vector3f &gyroBias) const; // return accelerometer bias in m/s/s void getAccelBias(Vector3f &accelBias) const; // return tilt error convergence metric void getTiltError(float &ang) const; // reset body axis gyro bias estimates void resetGyroBias(void); // Resets the baro so that it reads zero at the current height // Resets the EKF height to zero // Adjusts the EKF origin height so that the EKF height + origin height is the same as before // Returns true if the height datum reset has been performed // If using a range finder for height no reset is performed and it returns false bool resetHeightDatum(void); // Commands the EKF to not use GPS. // This command must be sent prior to vehicle arming and EKF commencement of GPS usage // Returns 0 if command rejected // Returns 1 if command accepted uint8_t setInhibitGPS(void); // return the horizontal speed limit in m/s set by optical flow sensor limits // return the scale factor to be applied to navigation velocity gains to compensate for increase in velocity noise with height when using optical flow void getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const; // return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis) void getWind(Vector3f &wind) const; // return earth magnetic field estimates in measurement units / 1000 void getMagNED(Vector3f &magNED) const; // return body magnetic field estimates in measurement units / 1000 void getMagXYZ(Vector3f &magXYZ) const; // return the index for the active magnetometer uint8_t getActiveMag() const; // Return estimated magnetometer offsets // Return true if magnetometer offsets are valid bool getMagOffsets(uint8_t mag_idx, Vector3f &magOffsets) const; // Return the last calculated latitude, longitude and height in WGS-84 // If a calculated location isn't available, return a raw GPS measurement // The status will return true if a calculation or raw measurement is available // The getFilterStatus() function provides a more detailed description of data health and must be checked if data is to be used for flight control bool getLLH(struct Location &loc) const; // return the latitude and longitude and height used to set the NED origin // All NED positions calculated by the filter are relative to this location // Returns false if the origin has not been set bool getOriginLLH(struct Location &loc) const; // set the latitude and longitude and height used to set the NED origin // All NED positions calculated by the filter will be relative to this location // The origin cannot be set if the filter is in a flight mode (eg vehicle armed) // Returns false if the filter has rejected the attempt to set the origin bool setOriginLLH(const Location &loc); // return estimated height above ground level // return false if ground height is not being estimated. bool getHAGL(float &HAGL) const; // return the Euler roll, pitch and yaw angle in radians void getEulerAngles(Vector3f &eulers) const; // return the transformation matrix from XYZ (body) to NED axes void getRotationBodyToNED(Matrix3f &mat) const; // return the quaternions defining the rotation from NED to XYZ (body) axes void getQuaternion(Quaternion &quat) const; // return the innovations for the NED Pos, NED Vel, XYZ Mag and Vtas measurements void getInnovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov, float &yawInnov) const; // return the innovation consistency test ratios for the velocity, position, magnetometer and true airspeed measurements void getVariances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const; // return the diagonals from the covariance matrix void getStateVariances(float stateVar[24]); // should we use the compass? This is public so it can be used for // reporting via ahrs.use_compass() bool use_compass(void) const; // write the raw optical flow measurements // rawFlowQuality is a measured of quality between 0 and 255, with 255 being the best quality // rawFlowRates are the optical flow rates in rad/sec about the X and Y sensor axes. // rawGyroRates are the sensor rotation rates in rad/sec measured by the sensors internal gyro // The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate // msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor. // posOffset is the XYZ flow sensor position in the body frame in m void writeOptFlowMeas(const uint8_t rawFlowQuality, const Vector2f &rawFlowRates, const Vector2f &rawGyroRates, const uint32_t msecFlowMeas, const Vector3f &posOffset); // return data for debugging optical flow fusion void getFlowDebug(float &varFlow, float &gndOffset, float &flowInnovX, float &flowInnovY, float &auxInnov, float &HAGL, float &rngInnov, float &range, float &gndOffsetErr) const; /* * Write body frame linear and angular displacement measurements from a visual odometry sensor * * quality is a normalised confidence value from 0 to 100 * delPos is the XYZ change in linear position measured in body frame and relative to the inertial reference at time_ms (m) * delAng is the XYZ angular rotation measured in body frame and relative to the inertial reference at time_ms (rad) * delTime is the time interval for the measurement of delPos and delAng (sec) * timeStamp_ms is the timestamp of the last image used to calculate delPos and delAng (msec) * posOffset is the XYZ body frame position of the camera focal point (m) */ void writeBodyFrameOdom(float quality, const Vector3f &delPos, const Vector3f &delAng, float delTime, uint32_t timeStamp_ms, const Vector3f &posOffset); /* * Write odometry data from a wheel encoder. The axis of rotation is assumed to be parallel to the vehicle body axis * * delAng is the measured change in angular position from the previous measurement where a positive rotation is produced by forward motion of the vehicle (rad) * delTime is the time interval for the measurement of delAng (sec) * timeStamp_ms is the time when the rotation was last measured (msec) * posOffset is the XYZ body frame position of the wheel hub (m) * radius is the effective rolling radius of the wheel (m) */ void writeWheelOdom(float delAng, float delTime, uint32_t timeStamp_ms, const Vector3f &posOffset, float radius); /* * Return data for debugging body frame odometry fusion: * * velInnov are the XYZ body frame velocity innovations (m/s) * velInnovVar are the XYZ body frame velocity innovation variances (m/s)**2 * * Return the time stamp of the last odometry fusion update (msec) */ uint32_t getBodyFrameOdomDebug(Vector3f &velInnov, Vector3f &velInnovVar); /* Returns the following data for debugging range beacon fusion ID : beacon identifier rng : measured range to beacon (m) innov : range innovation (m) innovVar : innovation variance (m^2) testRatio : innovation consistency test ratio beaconPosNED : beacon NED position (m) offsetHigh : high hypothesis for range beacons system vertical offset (m) offsetLow : low hypothesis for range beacons system vertical offset (m) posNED : North,East,Down position estimate of receiver from 3-state filter returns true if data could be found, false if it could not */ bool getRangeBeaconDebug(uint8_t &ID, float &rng, float &innov, float &innovVar, float &testRatio, Vector3f &beaconPosNED, float &offsetHigh, float &offsetLow, Vector3f &posNED); /* * Writes the measurement from a yaw angle sensor * * yawAngle: Yaw angle of the vehicle relative to true north in radians where a positive angle is * produced by a RH rotation about the Z body axis. The Yaw rotation is the first rotation in a * 321 (ZYX) or a 312 (ZXY) rotation sequence as specified by the 'type' argument. * yawAngleErr is the 1SD accuracy of the yaw angle measurement in radians. * timeStamp_ms: System time in msec when the yaw measurement was taken. This time stamp must include * all measurement lag and transmission delays. * type: An integer specifying Euler rotation order used to define the yaw angle. * type = 1 specifies a 312 (ZXY) rotation order, type = 2 specifies a 321 (ZYX) rotation order. */ void writeEulerYawAngle(float yawAngle, float yawAngleErr, uint32_t timeStamp_ms, uint8_t type); // called by vehicle code to specify that a takeoff is happening // causes the EKF to compensate for expected barometer errors due to ground effect void setTakeoffExpected(bool val); // called by vehicle code to specify that a touchdown is expected to happen // causes the EKF to compensate for expected barometer errors due to ground effect void setTouchdownExpected(bool val); // Set to true if the terrain underneath is stable enough to be used as a height reference // in combination with a range finder. Set to false if the terrain underneath the vehicle // cannot be used as a height reference void setTerrainHgtStable(bool val); /* return the filter fault status as a bitmasked integer 0 = quaternions are NaN 1 = velocities are NaN 2 = badly conditioned X magnetometer fusion 3 = badly conditioned Y magnetometer fusion 5 = badly conditioned Z magnetometer fusion 6 = badly conditioned airspeed fusion 7 = badly conditioned synthetic sideslip fusion 7 = filter is not initialised */ void getFilterFaults(uint16_t &faults) const; /* return filter timeout status as a bitmasked integer 0 = position measurement timeout 1 = velocity measurement timeout 2 = height measurement timeout 3 = magnetometer measurement timeout 5 = unassigned 6 = unassigned 7 = unassigned 7 = unassigned */ void getFilterTimeouts(uint8_t &timeouts) const; /* return filter gps quality check status */ void getFilterGpsStatus(nav_gps_status &status) const; /* Return a filter function status that indicates: Which outputs are valid If the filter has detected takeoff If the filter has activated the mode that mitigates against ground effect static pressure errors If GPS data is being used */ void getFilterStatus(nav_filter_status &status) const; // send an EKF_STATUS_REPORT message to GCS void send_status_report(mavlink_channel_t chan); // provides the height limit to be observed by the control loops // returns false if no height limiting is required // this is needed to ensure the vehicle does not fly too high when using optical flow navigation bool getHeightControlLimit(float &height) const; // return the amount of yaw angle change due to the last yaw angle reset in radians // returns the time of the last yaw angle reset or 0 if no reset has ever occurred uint32_t getLastYawResetAngle(float &yawAng) const; // return the amount of NE position change due to the last position reset in metres // returns the time of the last reset or 0 if no reset has ever occurred uint32_t getLastPosNorthEastReset(Vector2f &pos) const; // return the amount of D position change due to the last position reset in metres // returns the time of the last reset or 0 if no reset has ever occurred uint32_t getLastPosDownReset(float &posD) const; // return the amount of NE velocity change due to the last velocity reset in metres/sec // returns the time of the last reset or 0 if no reset has ever occurred uint32_t getLastVelNorthEastReset(Vector2f &vel) const; // report any reason for why the backend is refusing to initialise const char *prearm_failure_reason(void) const; // report the number of frames lapsed since the last state prediction // this is used by other instances to level load uint8_t getFramesSincePredict(void) const; // publish output observer angular, velocity and position tracking error void getOutputTrackingError(Vector3f &error) const; // get the IMU index. For now we return the gyro index, as that is most // critical for use by other subsystems. uint8_t getIMUIndex(void) const { return gyro_index_active; } // get timing statistics structure void getTimingStatistics(struct ekf_timing &timing); private: // Reference to the global EKF frontend for parameters NavEKF3 *frontend; uint8_t imu_index; // preferred IMU index uint8_t gyro_index_active; // active gyro index (in case preferred fails) uint8_t accel_index_active; // active accel index (in case preferred fails) uint8_t core_index; uint8_t imu_buffer_length; uint8_t obs_buffer_length; typedef float ftype; #if MATH_CHECK_INDEXES typedef VectorN Vector2; typedef VectorN Vector3; typedef VectorN Vector4; typedef VectorN Vector5; typedef VectorN Vector6; typedef VectorN Vector7; typedef VectorN Vector8; typedef VectorN Vector9; typedef VectorN Vector10; typedef VectorN Vector11; typedef VectorN Vector13; typedef VectorN Vector14; typedef VectorN Vector15; typedef VectorN Vector21; typedef VectorN Vector22; typedef VectorN Vector23; typedef VectorN Vector24; typedef VectorN Vector25; typedef VectorN Vector31; typedef VectorN,3> Matrix3; typedef VectorN,24> Matrix24; typedef VectorN,50> Matrix34_50; typedef VectorN Vector_u32_50; #else typedef ftype Vector2[2]; typedef ftype Vector3[3]; typedef ftype Vector4[4]; typedef ftype Vector5[5]; typedef ftype Vector6[6]; typedef ftype Vector7[7]; typedef ftype Vector8[8]; typedef ftype Vector9[9]; typedef ftype Vector10[10]; typedef ftype Vector11[11]; typedef ftype Vector13[13]; typedef ftype Vector14[14]; typedef ftype Vector15[15]; typedef ftype Vector21[21]; typedef ftype Vector22[22]; typedef ftype Vector23[23]; typedef ftype Vector24[24]; typedef ftype Vector25[25]; typedef ftype Matrix3[3][3]; typedef ftype Matrix24[24][24]; typedef ftype Matrix34_50[34][50]; typedef uint32_t Vector_u32_50[50]; #endif const AP_AHRS *_ahrs; // the states are available in two forms, either as a Vector24, or // broken down as individual elements. Both are equivalent (same // memory) struct state_elements { Quaternion quat; // quaternion defining rotation from local NED earth frame to body frame Vector3f velocity; // velocity of IMU in local NED earth frame (m/sec) Vector3f position; // position of IMU in local NED earth frame (m) Vector3f gyro_bias; // body frame delta angle IMU bias vector (rad) Vector3f accel_bias; // body frame delta velocity IMU bias vector (m/sec) Vector3f earth_magfield; // earth frame magnetic field vector (Gauss) Vector3f body_magfield; // body frame magnetic field vector (Gauss) Vector2f wind_vel; // horizontal North East wind velocity vector in local NED earth frame (m/sec) }; union { Vector24 statesArray; struct state_elements stateStruct; }; struct output_elements { Quaternion quat; // quaternion defining rotation from local NED earth frame to body frame Vector3f velocity; // velocity of body frame origin in local NED earth frame (m/sec) Vector3f position; // position of body frame origin in local NED earth frame (m) }; struct imu_elements { Vector3f delAng; // IMU delta angle measurements in body frame (rad) Vector3f delVel; // IMU delta velocity measurements in body frame (m/sec) float delAngDT; // time interval over which delAng has been measured (sec) float delVelDT; // time interval over which delVelDT has been measured (sec) uint32_t time_ms; // measurement timestamp (msec) uint8_t gyro_index; uint8_t accel_index; }; struct gps_elements { Vector2f pos; // horizontal North East position of the GPS antenna in local NED earth frame (m) float hgt; // height of the GPS antenna in local NED earth frame (m) Vector3f vel; // velocity of the GPS antenna in local NED earth frame (m/sec) uint32_t time_ms; // measurement timestamp (msec) uint8_t sensor_idx; // unique integer identifying the GPS sensor }; struct mag_elements { Vector3f mag; // body frame magnetic field measurements (Gauss) uint32_t time_ms; // measurement timestamp (msec) }; struct baro_elements { float hgt; // height of the pressure sensor in local NED earth frame (m) uint32_t time_ms; // measurement timestamp (msec) }; struct range_elements { float rng; // distance measured by the range sensor (m) uint32_t time_ms; // measurement timestamp (msec) uint8_t sensor_idx; // integer either 0 or 1 uniquely identifying up to two range sensors }; struct rng_bcn_elements { float rng; // range measurement to each beacon (m) Vector3f beacon_posNED; // NED position of the beacon (m) float rngErr; // range measurement error 1-std (m) uint8_t beacon_ID; // beacon identification number uint32_t time_ms; // measurement timestamp (msec) }; struct tas_elements { float tas; // true airspeed measurement (m/sec) uint32_t time_ms; // measurement timestamp (msec) }; struct of_elements { Vector2f flowRadXY; // raw (non motion compensated) optical flow angular rates about the XY body axes (rad/sec) Vector2f flowRadXYcomp; // motion compensated XY optical flow angular rates about the XY body axes (rad/sec) uint32_t time_ms; // measurement timestamp (msec) Vector3f bodyRadXYZ; // body frame XYZ axis angular rates averaged across the optical flow measurement interval (rad/sec) const Vector3f *body_offset;// pointer to XYZ position of the optical flow sensor in body frame (m) }; struct vel_odm_elements { Vector3f vel; // XYZ velocity measured in body frame (m/s) float velErr; // velocity measurement error 1-std (m/s) const Vector3f *body_offset;// pointer to XYZ position of the velocity sensor in body frame (m) Vector3f angRate; // angular rate estimated from odometry (rad/sec) uint32_t time_ms; // measurement timestamp (msec) }; struct wheel_odm_elements { float delAng; // wheel rotation angle measured in body frame - positive is forward movement of vehicle (rad/s) float radius; // wheel radius (m) const Vector3f *hub_offset; // pointer to XYZ position of the wheel hub in body frame (m) float delTime; // time interval that the measurement was accumulated over (sec) uint32_t time_ms; // measurement timestamp (msec) }; struct yaw_elements { float yawAng; // yaw angle measurement (rad) float yawAngErr; // yaw angle 1SD measurement accuracy (rad) uint32_t time_ms; // measurement timestamp (msec) uint8_t type; // type specifiying Euler rotation order used, 1 = 312 (ZXY), 2 = 321 (ZYX) }; // bias estimates for the IMUs that are enabled but not being used // by this core. struct { Vector3f gyro_bias; Vector3f accel_bias; } inactiveBias[INS_MAX_INSTANCES]; // update the navigation filter status void updateFilterStatus(void); // update the quaternion, velocity and position states using IMU measurements void UpdateStrapdownEquationsNED(); // calculate the predicted state covariance matrix void CovariancePrediction(); // force symmetry on the state covariance matrix void ForceSymmetry(); // constrain variances (diagonal terms) in the state covariance matrix void ConstrainVariances(); // constrain states void ConstrainStates(); // fuse selected position, velocity and height measurements void FuseVelPosNED(); // fuse body frame velocity measurements void FuseBodyVel(); // fuse range beacon measurements void FuseRngBcn(); // use range beacon measurements to calculate a static position void FuseRngBcnStatic(); // calculate the offset from EKF vertical position datum to the range beacon system datum void CalcRangeBeaconPosDownOffset(float obsVar, Vector3f &vehiclePosNED, bool aligning); // fuse magnetometer measurements void FuseMagnetometer(); // fuse true airspeed measurements void FuseAirspeed(); // fuse synthetic sideslip measurement of zero void FuseSideslip(); // zero specified range of rows in the state covariance matrix void zeroRows(Matrix24 &covMat, uint8_t first, uint8_t last); // zero specified range of columns in the state covariance matrix void zeroCols(Matrix24 &covMat, uint8_t first, uint8_t last); // Reset the stored output history to current data void StoreOutputReset(void); // Reset the stored output quaternion history to current EKF state void StoreQuatReset(void); // Rotate the stored output quaternion history through a quaternion rotation void StoreQuatRotate(const Quaternion &deltaQuat); // store altimeter data void StoreBaro(); // recall altimeter data at the fusion time horizon // return true if data found bool RecallBaro(); // store range finder data void StoreRange(); // recall range finder data at the fusion time horizon // return true if data found bool RecallRange(); // store magnetometer data void StoreMag(); // recall magetometer data at the fusion time horizon // return true if data found bool RecallMag(); // store true airspeed data void StoreTAS(); // recall true airspeed data at the fusion time horizon // return true if data found bool RecallTAS(); // store optical flow data void StoreOF(); // recall optical flow data at the fusion time horizon // return true if data found bool RecallOF(); // calculate nav to body quaternions from body to nav rotation matrix void quat2Tbn(Matrix3f &Tbn, const Quaternion &quat) const; // calculate the NED earth spin vector in rad/sec void calcEarthRateNED(Vector3f &omega, int32_t latitude) const; // initialise the covariance matrix void CovarianceInit(); // helper functions for readIMUData bool readDeltaVelocity(uint8_t ins_index, Vector3f &dVel, float &dVel_dt); bool readDeltaAngle(uint8_t ins_index, Vector3f &dAng); // helper functions for correcting IMU data void correctDeltaAngle(Vector3f &delAng, float delAngDT, uint8_t gyro_index); void correctDeltaVelocity(Vector3f &delVel, float delVelDT, uint8_t accel_index); // update IMU delta angle and delta velocity measurements void readIMUData(); // update estimate of inactive bias states void learnInactiveBiases(); // check for new valid GPS data and update stored measurement if available void readGpsData(); // check for new altitude measurement data and update stored measurement if available void readBaroData(); // check for new magnetometer data and update store measurements if available void readMagData(); // check for new airspeed data and update stored measurements if available void readAirSpdData(); // check for new range beacon data and update stored measurements if available void readRngBcnData(); // determine when to perform fusion of GPS position and velocity measurements void SelectVelPosFusion(); // determine when to perform fusion of range measurements take relative to a beacon at a known NED position void SelectRngBcnFusion(); // determine when to perform fusion of magnetometer measurements void SelectMagFusion(); // determine when to perform fusion of true airspeed measurements void SelectTasFusion(); // determine when to perform fusion of synthetic sideslp measurements void SelectBetaFusion(); // force alignment of the yaw angle using GPS velocity data void realignYawGPS(); // initialise the earth magnetic field states using declination and current attitude and magnetometer measurements // align the yaw angle for the quaternion states using the external yaw sensor void alignYawAngle(); // and return attitude quaternion Quaternion calcQuatAndFieldStates(float roll, float pitch); // zero stored variables void InitialiseVariables(); // zero stored variables related to mag void InitialiseVariablesMag(); // reset the horizontal position states uing the last GPS measurement void ResetPosition(void); // reset velocity states using the last GPS measurement void ResetVelocity(void); // reset the vertical position state using the last height measurement void ResetHeight(void); // return true if we should use the airspeed sensor bool useAirspeed(void) const; // return true if the vehicle code has requested the filter to be ready for flight bool readyToUseGPS(void) const; // return true if the filter to be ready to use the beacon range measurements bool readyToUseRangeBeacon(void) const; // Check for filter divergence void checkDivergence(void); // Calculate weighting that is applied to IMU1 accel data to blend data from IMU's 1 and 2 void calcIMU_Weighting(float K1, float K2); // return true if the filter is ready to start using optical flow measurements bool readyToUseOptFlow(void) const; // return true if the filter is ready to start using body frame odometry measurements bool readyToUseBodyOdm(void) const; // return true if we should use the range finder sensor bool useRngFinder(void) const; // determine when to perform fusion of optical flow measurements void SelectFlowFusion(); // determine when to perform fusion of body frame odometry measurements void SelectBodyOdomFusion(); // Estimate terrain offset using a single state EKF void EstimateTerrainOffset(); // fuse optical flow measurements into the main filter void FuseOptFlow(); // Control filter mode changes void controlFilterModes(); // Determine if we are flying or on the ground void detectFlight(); // Set inertial navigation aiding mode void setAidingMode(); // Determine if learning of wind and magnetic field will be enabled and set corresponding indexing limits to // avoid unnecessary operations void setWindMagStateLearningMode(); // Check the alignmnent status of the tilt attitude // Used during initial bootstrap alignment of the filter void checkAttitudeAlignmentStatus(); // Control reset of yaw and magnetic field states void controlMagYawReset(); // Set the NED origin to be used until the next filter reset void setOrigin(const Location &loc); // determine if a takeoff is expected so that we can compensate for expected barometer errors due to ground effect bool getTakeoffExpected(); // determine if a touchdown is expected so that we can compensate for expected barometer errors due to ground effect bool getTouchdownExpected(); // Assess GPS data quality and set gpsGoodToAlign void calcGpsGoodToAlign(void); // set the class variable true if the delta angle bias variances are sufficiently small void checkGyroCalStatus(void); // update inflight calculaton that determines if GPS data is good enough for reliable navigation void calcGpsGoodForFlight(void); // Read the range finder and take new measurements if available // Apply a median filter to range finder data void readRangeFinder(); // check if the vehicle has taken off during optical flow navigation by looking at inertial and range finder data void detectOptFlowTakeoff(void); // align the NE earth magnetic field states with the published declination void alignMagStateDeclination(); // Fuse compass measurements using a simple declination observation (doesn't require magnetic field states) void fuseEulerYaw(bool usePredictedYaw, bool useExternalYawSensor); // Fuse declination angle to keep earth field declination from changing when we don't have earth relative observations. // Input is 1-sigma uncertainty in published declination void FuseDeclination(float declErr); // Propagate PVA solution forward from the fusion time horizon to the current time horizon // using a simple observer void calcOutputStates(); // calculate a filtered offset between baro height measurement and EKF height estimate void calcFiltBaroOffset(); // correct the height of the EKF origin to be consistent with GPS Data using a Bayes filter. void correctEkfOriginHeight(); // Select height data to be fused from the available baro, range finder and GPS sources void selectHeightForFusion(); // zero attitude state covariances, but preserve variances void zeroAttCovOnly(); // record a yaw reset event void recordYawReset(); // record a magnetic field state reset event void recordMagReset(); // effective value of MAG_CAL uint8_t effective_magCal(void) const; // calculate the variances for the rotation vector equivalent Vector3f calcRotVecVariances(void); // initialise the quaternion covariances using rotation vector variances void initialiseQuatCovariances(const Vector3f &rotVarVec); // update timing statistics structure void updateTimingStatistics(void); // Update the state index limit based on which states are active void updateStateIndexLim(void); // Variables bool statesInitialised; // boolean true when filter states have been initialised bool velHealth; // boolean true if velocity measurements have passed innovation consistency check bool posHealth; // boolean true if position measurements have passed innovation consistency check bool hgtHealth; // boolean true if height measurements have passed innovation consistency check bool magHealth; // boolean true if magnetometer has passed innovation consistency check bool tasHealth; // boolean true if true airspeed has passed innovation consistency check bool velTimeout; // boolean true if velocity measurements have failed innovation consistency check and timed out bool posTimeout; // boolean true if position measurements have failed innovation consistency check and timed out bool hgtTimeout; // boolean true if height measurements have failed innovation consistency check and timed out bool magTimeout; // boolean true if magnetometer measurements have failed for too long and have timed out bool tasTimeout; // boolean true if true airspeed measurements have failed for too long and have timed out bool badMagYaw; // boolean true if the magnetometer is declared to be producing bad data bool badIMUdata; // boolean true if the bad IMU data is detected float gpsNoiseScaler; // Used to scale the GPS measurement noise and consistency gates to compensate for operation with small satellite counts Matrix24 P; // covariance matrix imu_ring_buffer_t storedIMU; // IMU data buffer obs_ring_buffer_t storedGPS; // GPS data buffer obs_ring_buffer_t storedMag; // Magnetometer data buffer obs_ring_buffer_t storedBaro; // Baro data buffer obs_ring_buffer_t storedTAS; // TAS data buffer obs_ring_buffer_t storedRange; // Range finder data buffer imu_ring_buffer_t storedOutput;// output state buffer Matrix3f prevTnb; // previous nav to body transformation used for INS earth rotation compensation ftype accNavMag; // magnitude of navigation accel - used to adjust GPS obs variance (m/s^2) ftype accNavMagHoriz; // magnitude of navigation accel in horizontal plane (m/s^2) Vector3f earthRateNED; // earths angular rate vector in NED (rad/s) ftype dtIMUavg; // expected time between IMU measurements (sec) ftype dtEkfAvg; // expected time between EKF updates (sec) ftype dt; // time lapsed since the last covariance prediction (sec) ftype hgtRate; // state for rate of change of height filter bool onGround; // true when the flight vehicle is definitely on the ground bool prevOnGround; // value of onGround from previous frame - used to detect transition bool inFlight; // true when the vehicle is definitely flying bool prevInFlight; // value inFlight from previous frame - used to detect transition bool manoeuvring; // boolean true when the flight vehicle is performing horizontal changes in velocity uint32_t airborneDetectTime_ms; // last time flight movement was detected Vector6 innovVelPos; // innovation output for a group of measurements Vector6 varInnovVelPos; // innovation variance output for a group of measurements bool fuseVelData; // this boolean causes the velNED measurements to be fused bool fusePosData; // this boolean causes the posNE measurements to be fused bool fuseHgtData; // this boolean causes the hgtMea measurements to be fused Vector3f innovMag; // innovation output from fusion of X,Y,Z compass measurements Vector3f varInnovMag; // innovation variance output from fusion of X,Y,Z compass measurements ftype innovVtas; // innovation output from fusion of airspeed measurements ftype varInnovVtas; // innovation variance output from fusion of airspeed measurements bool magFusePerformed; // boolean set to true when magnetometer fusion has been perfomred in that time step bool magFuseRequired; // boolean set to true when magnetometer fusion will be perfomred in the next time step uint32_t prevTasStep_ms; // time stamp of last TAS fusion step uint32_t prevBetaStep_ms; // time stamp of last synthetic sideslip fusion step uint32_t lastMagUpdate_us; // last time compass was updated in usec Vector3f velDotNED; // rate of change of velocity in NED frame Vector3f velDotNEDfilt; // low pass filtered velDotNED uint32_t imuSampleTime_ms; // time that the last IMU value was taken bool tasDataToFuse; // true when new airspeed data is waiting to be fused uint32_t lastBaroReceived_ms; // time last time we received baro height data uint16_t hgtRetryTime_ms; // time allowed without use of height measurements before a height timeout is declared uint32_t lastVelPassTime_ms; // time stamp when GPS velocity measurement last passed innovation consistency check (msec) uint32_t lastPosPassTime_ms; // time stamp when GPS position measurement last passed innovation consistency check (msec) uint32_t lastHgtPassTime_ms; // time stamp when height measurement last passed innovation consistency check (msec) uint32_t lastTasPassTime_ms; // time stamp when airspeed measurement last passed innovation consistency check (msec) uint32_t lastTimeGpsReceived_ms;// last time we received GPS data uint32_t timeAtLastAuxEKF_ms; // last time the auxiliary filter was run to fuse range or optical flow measurements uint32_t secondLastGpsTime_ms; // time of second last GPS fix used to determine how long since last update uint32_t lastHealthyMagTime_ms; // time the magnetometer was last declared healthy bool allMagSensorsFailed; // true if all magnetometer sensors have timed out on this flight and we are no longer using magnetometer data uint32_t lastSynthYawTime_ms; // time stamp when synthetic yaw measurement was last fused to maintain covariance health (msec) uint32_t ekfStartTime_ms; // time the EKF was started (msec) Vector2f lastKnownPositionNE; // last known position uint32_t lastDecayTime_ms; // time of last decay of GPS position offset float velTestRatio; // sum of squares of GPS velocity innovation divided by fail threshold float posTestRatio; // sum of squares of GPS position innovation divided by fail threshold float hgtTestRatio; // sum of squares of baro height innovation divided by fail threshold Vector3f magTestRatio; // sum of squares of magnetometer innovations divided by fail threshold float tasTestRatio; // sum of squares of true airspeed innovation divided by fail threshold bool inhibitWindStates; // true when wind states and covariances are to remain constant bool inhibitMagStates; // true when magnetic field states are inactive bool inhibitDelVelBiasStates; // true when IMU delta velocity bias states are inactive bool inhibitDelAngBiasStates; // true when IMU delta angle bias states are inactive bool gpsNotAvailable; // bool true when valid GPS data is not available struct Location EKF_origin; // LLH origin of the NED axis system bool validOrigin; // true when the EKF origin is valid float gpsSpdAccuracy; // estimated speed accuracy in m/s returned by the GPS receiver float gpsPosAccuracy; // estimated position accuracy in m returned by the GPS receiver float gpsHgtAccuracy; // estimated height accuracy in m returned by the GPS receiver uint32_t lastGpsVelFail_ms; // time of last GPS vertical velocity consistency check fail uint32_t lastGpsVelPass_ms; // time of last GPS vertical velocity consistency check pass uint32_t lastGpsAidBadTime_ms; // time in msec gps aiding was last detected to be bad float posDownAtTakeoff; // flight vehicle vertical position sampled at transition from on-ground to in-air and used as a reference (m) bool useGpsVertVel; // true if GPS vertical velocity should be used float yawResetAngle; // Change in yaw angle due to last in-flight yaw reset in radians. A positive value means the yaw angle has increased. uint32_t lastYawReset_ms; // System time at which the last yaw reset occurred. Returned by getLastYawResetAngle bool tiltAlignComplete; // true when tilt alignment is complete bool yawAlignComplete; // true when yaw alignment is complete bool magStateInitComplete; // true when the magnetic field states have been initialised uint8_t stateIndexLim; // Max state index used during matrix and array operations imu_elements imuDataDelayed; // IMU data at the fusion time horizon imu_elements imuDataNew; // IMU data at the current time horizon imu_elements imuDataDownSampledNew; // IMU data at the current time horizon that has been downsampled to a 100Hz rate Quaternion imuQuatDownSampleNew; // Quaternion obtained by rotating through the IMU delta angles since the start of the current down sampled frame uint8_t fifoIndexNow; // Global index for inertial and output solution at current time horizon uint8_t fifoIndexDelayed; // Global index for inertial and output solution at delayed/fusion time horizon baro_elements baroDataNew; // Baro data at the current time horizon baro_elements baroDataDelayed; // Baro data at the fusion time horizon uint8_t baroStoreIndex; // Baro data storage index range_elements rangeDataNew; // Range finder data at the current time horizon range_elements rangeDataDelayed;// Range finder data at the fusion time horizon uint8_t rangeStoreIndex; // Range finder data storage index tas_elements tasDataNew; // TAS data at the current time horizon tas_elements tasDataDelayed; // TAS data at the fusion time horizon uint8_t tasStoreIndex; // TAS data storage index mag_elements magDataNew; // Magnetometer data at the current time horizon mag_elements magDataDelayed; // Magnetometer data at the fusion time horizon uint8_t magStoreIndex; // Magnetometer data storage index gps_elements gpsDataNew; // GPS data at the current time horizon gps_elements gpsDataDelayed; // GPS data at the fusion time horizon uint8_t last_gps_idx; // sensor ID of the GPS receiver used for the last fusion or reset output_elements outputDataNew; // output state data at the current time step output_elements outputDataDelayed; // output state data at the current time step Vector3f delAngCorrection; // correction applied to delta angles used by output observer to track the EKF Vector3f velErrintegral; // integral of output predictor NED velocity tracking error (m) Vector3f posErrintegral; // integral of output predictor NED position tracking error (m.sec) float innovYaw; // compass yaw angle innovation (rad) uint32_t timeTasReceived_ms; // time last TAS data was received (msec) bool gpsGoodToAlign; // true when the GPS quality can be used to initialise the navigation system uint32_t magYawResetTimer_ms; // timer in msec used to track how long good magnetometer data is failing innovation consistency checks bool consistentMagData; // true when the magnetometers are passing consistency checks bool motorsArmed; // true when the motors have been armed bool prevMotorsArmed; // value of motorsArmed from previous frame bool posVelFusionDelayed; // true when the position and velocity fusion has been delayed bool optFlowFusionDelayed; // true when the optical flow fusion has been delayed bool airSpdFusionDelayed; // true when the air speed fusion has been delayed bool sideSlipFusionDelayed; // true when the sideslip fusion has been delayed Vector3f lastMagOffsets; // Last magnetometer offsets from COMPASS_ parameters. Used to detect parameter changes. bool lastMagOffsetsValid; // True when lastMagOffsets has been initialized Vector2f posResetNE; // Change in North/East position due to last in-flight reset in metres. Returned by getLastPosNorthEastReset uint32_t lastPosReset_ms; // System time at which the last position reset occurred. Returned by getLastPosNorthEastReset Vector2f velResetNE; // Change in North/East velocity due to last in-flight reset in metres/sec. Returned by getLastVelNorthEastReset uint32_t lastVelReset_ms; // System time at which the last velocity reset occurred. Returned by getLastVelNorthEastReset float posResetD; // Change in Down position due to last in-flight reset in metres. Returned by getLastPosDowntReset uint32_t lastPosResetD_ms; // System time at which the last position reset occurred. Returned by getLastPosDownReset float yawTestRatio; // square of magnetometer yaw angle innovation divided by fail threshold Quaternion prevQuatMagReset; // Quaternion from the last time the magnetic field state reset condition test was performed uint8_t fusionHorizonOffset; // number of IMU samples that the fusion time horizon has been shifted to prevent multiple EKF instances fusing data at the same time float hgtInnovFiltState; // state used for fitering of the height innovations used for pre-flight checks uint8_t magSelectIndex; // Index of the magnetometer that is being used by the EKF bool runUpdates; // boolean true when the EKF updates can be run uint32_t framesSincePredict; // number of frames lapsed since EKF instance did a state prediction bool startPredictEnabled; // boolean true when the frontend has given permission to start a new state prediciton cycle uint8_t localFilterTimeStep_ms; // average number of msec between filter updates float posDownObsNoise; // observation noise variance on the vertical position used by the state and covariance update step (m^2) Vector3f delAngCorrected; // corrected IMU delta angle vector at the EKF time horizon (rad) Vector3f delVelCorrected; // corrected IMU delta velocity vector at the EKF time horizon (m/s) bool magFieldLearned; // true when the magnetic field has been learned uint32_t wasLearningCompass_ms; // time when we were last waiting for compass learn to complete Vector3f earthMagFieldVar; // NED earth mag field variances for last learned field (mGauss^2) Vector3f bodyMagFieldVar; // XYZ body mag field variances for last learned field (mGauss^2) bool delAngBiasLearned; // true when the gyro bias has been learned nav_filter_status filterStatus; // contains the status of various filter outputs float ekfOriginHgtVar; // Variance of the EKF WGS-84 origin height estimate (m^2) double ekfGpsRefHgt; // floating point representation of the WGS-84 reference height used to convert GPS height to local height (m) uint32_t lastOriginHgtTime_ms; // last time the ekf's WGS-84 origin height was corrected Vector3f outputTrackError; // attitude (rad), velocity (m/s) and position (m) tracking error magnitudes from the output observer Vector3f velOffsetNED; // This adds to the earth frame velocity estimate at the IMU to give the velocity at the body origin (m/s) Vector3f posOffsetNED; // This adds to the earth frame position estimate at the IMU to give the position at the body origin (m) uint32_t firstInitTime_ms; // First time the initialise function was called (msec) uint32_t lastInitFailReport_ms; // Last time the buffer initialisation failure report was sent (msec) // Specify source of data to be used for a partial state reset // Checking the availability and quality of the data source specified is the responsibility of the caller enum resetDataSource { DEFAULT=0, // Use data source selected by reset function internal rules GPS=1, // Use GPS RNGBCN=2, // Use beacon range data FLOW=3, // Use optical flow rates BARO=4, // Use Baro height MAG=5, // Use magnetometer data RNGFND=6 // Use rangefinder data }; resetDataSource posResetSource; // preferred source of data for position reset resetDataSource velResetSource; // preferred source of data for a velocity reset // variables used to calculate a vertical velocity that is kinematically consistent with the vertical position float posDownDerivative; // Rate of change of vertical position (dPosD/dt) in m/s. This is the first time derivative of PosD. float posDown; // Down position state used in calculation of posDownRate // variables used by the pre-initialisation GPS checks struct Location gpsloc_prev; // LLH location of previous GPS measurement uint32_t lastPreAlignGpsCheckTime_ms; // last time in msec the GPS quality was checked during pre alignment checks float gpsDriftNE; // amount of drift detected in the GPS position during pre-flight GPs checks float gpsVertVelFilt; // amount of filtered vertical GPS velocity detected during pre-flight GPS checks float gpsHorizVelFilt; // amount of filtered horizontal GPS velocity detected during pre-flight GPS checks // variable used by the in-flight GPS quality check bool gpsSpdAccPass; // true when reported GPS speed accuracy passes in-flight checks bool ekfInnovationsPass; // true when GPS innovations pass in-flight checks float sAccFilterState1; // state variable for LPF applied to reported GPS speed accuracy float sAccFilterState2; // state variable for peak hold filter applied to reported GPS speed uint32_t lastGpsCheckTime_ms; // last time in msec the GPS quality was checked uint32_t lastInnovPassTime_ms; // last time in msec the GPS innovations passed uint32_t lastInnovFailTime_ms; // last time in msec the GPS innovations failed bool gpsAccuracyGood; // true when the GPS accuracy is considered to be good enough for safe flight. // States used for unwrapping of compass yaw error float innovationIncrement; float lastInnovation; // variables added for optical flow fusion obs_ring_buffer_t storedOF; // OF data buffer of_elements ofDataNew; // OF data at the current time horizon of_elements ofDataDelayed; // OF data at the fusion time horizon uint8_t ofStoreIndex; // OF data storage index bool flowDataToFuse; // true when optical flow data has is ready for fusion bool flowDataValid; // true while optical flow data is still fresh Vector2f auxFlowObsInnov; // optical flow rate innovation from 1-state terrain offset estimator uint32_t flowValidMeaTime_ms; // time stamp from latest valid flow measurement (msec) uint32_t rngValidMeaTime_ms; // time stamp from latest valid range measurement (msec) uint32_t flowMeaTime_ms; // time stamp from latest flow measurement (msec) uint32_t gndHgtValidTime_ms; // time stamp from last terrain offset state update (msec) Matrix3f Tbn_flow; // transformation matrix from body to nav axes at the middle of the optical flow sample period Vector2 varInnovOptFlow; // optical flow innovations variances (rad/sec)^2 Vector2 innovOptFlow; // optical flow LOS innovations (rad/sec) float Popt; // Optical flow terrain height state covariance (m^2) float terrainState; // terrain position state (m) float prevPosN; // north position at last measurement float prevPosE; // east position at last measurement float varInnovRng; // range finder observation innovation variance (m^2) float innovRng; // range finder observation innovation (m) float hgtMea; // height measurement derived from either baro, gps or range finder data (m) bool inhibitGndState; // true when the terrain position state is to remain constant uint32_t prevFlowFuseTime_ms; // time both flow measurement components passed their innovation consistency checks Vector2 flowTestRatio; // square of optical flow innovations divided by fail threshold used by main filter where >1.0 is a fail Vector2f auxFlowTestRatio; // sum of squares of optical flow innovation divided by fail threshold used by 1-state terrain offset estimator float R_LOS; // variance of optical flow rate measurements (rad/sec)^2 float auxRngTestRatio; // square of range finder innovations divided by fail threshold used by main filter where >1.0 is a fail Vector2f flowGyroBias; // bias error of optical flow sensor gyro output bool rangeDataToFuse; // true when valid range finder height data has arrived at the fusion time horizon. bool baroDataToFuse; // true when valid baro height finder data has arrived at the fusion time horizon. bool gpsDataToFuse; // true when valid GPS data has arrived at the fusion time horizon. bool magDataToFuse; // true when valid magnetometer data has arrived at the fusion time horizon Vector2f heldVelNE; // velocity held when no aiding is available enum AidingMode {AID_ABSOLUTE=0, // GPS or some other form of absolute position reference aiding is being used (optical flow may also be used in parallel) so position estimates are absolute. AID_NONE=1, // no aiding is being used so only attitude and height estimates are available. Either constVelMode or constPosMode must be used to constrain tilt drift. AID_RELATIVE=2 // only optical flow aiding is being used so position estimates will be relative }; AidingMode PV_AidingMode; // Defines the preferred mode for aiding of velocity and position estimates from the INS AidingMode PV_AidingModePrev; // Value of PV_AidingMode from the previous frame - used to detect transitions bool gpsInhibit; // externally set flag informing the EKF not to use the GPS bool gndOffsetValid; // true when the ground offset state can still be considered valid Vector3f delAngBodyOF; // bias corrected delta angle of the vehicle IMU measured summed across the time since the last OF measurement float delTimeOF; // time that delAngBodyOF is summed across bool flowFusionActive; // true when optical flow fusion is active Vector3f accelPosOffset; // position of IMU accelerometer unit in body frame (m) // Range finder float baroHgtOffset; // offset applied when when switching to use of Baro height float rngOnGnd; // Expected range finder reading in metres when vehicle is on ground float storedRngMeas[2][3]; // Ringbuffer of stored range measurements for dual range sensors uint32_t storedRngMeasTime_ms[2][3]; // Ringbuffers of stored range measurement times for dual range sensors uint32_t lastRngMeasTime_ms; // Timestamp of last range measurement uint8_t rngMeasIndex[2]; // Current range measurement ringbuffer index for dual range sensors bool terrainHgtStable; // true when the terrain height is stable enough to be used as a height reference uint32_t terrainHgtStableSet_ms; // system time at which terrainHgtStable was set // body frame odometry fusion obs_ring_buffer_t storedBodyOdm; // body velocity data buffer vel_odm_elements bodyOdmDataNew; // Body frame odometry data at the current time horizon vel_odm_elements bodyOdmDataDelayed; // Body frame odometry data at the fusion time horizon uint32_t lastbodyVelPassTime_ms; // time stamp when the body velocity measurement last passed innovation consistency checks (msec) Vector3 bodyVelTestRatio; // Innovation test ratios for body velocity XYZ measurements Vector3 varInnovBodyVel; // Body velocity XYZ innovation variances (m/sec)^2 Vector3 innovBodyVel; // Body velocity XYZ innovations (m/sec) uint32_t prevBodyVelFuseTime_ms; // previous time all body velocity measurement components passed their innovation consistency checks (msec) uint32_t bodyOdmMeasTime_ms; // time body velocity measurements were accepted for input to the data buffer (msec) bool bodyVelFusionDelayed; // true when body frame velocity fusion has been delayed bool bodyVelFusionActive; // true when body frame velocity fusion is active // wheel sensor fusion uint32_t wheelOdmMeasTime_ms; // time wheel odometry measurements were accepted for input to the data buffer (msec) bool usingWheelSensors; // true when the body frame velocity fusion method should take onbservation data from the wheel odometry buffer obs_ring_buffer_t storedWheelOdm; // body velocity data buffer wheel_odm_elements wheelOdmDataNew; // Body frame odometry data at the current time horizon wheel_odm_elements wheelOdmDataDelayed; // Body frame odometry data at the fusion time horizon // yaw sensor fusion uint32_t yawMeasTime_ms; obs_ring_buffer_t storedYawAng; yaw_elements yawAngDataNew; yaw_elements yawAngDataDelayed; // Range Beacon Sensor Fusion obs_ring_buffer_t storedRangeBeacon; // Beacon range buffer rng_bcn_elements rngBcnDataNew; // Range beacon data at the current time horizon rng_bcn_elements rngBcnDataDelayed; // Range beacon data at the fusion time horizon uint8_t rngBcnStoreIndex; // Range beacon data storage index uint32_t lastRngBcnPassTime_ms; // time stamp when the range beacon measurement last passed innovation consistency checks (msec) float rngBcnTestRatio; // Innovation test ratio for range beacon measurements bool rngBcnHealth; // boolean true if range beacon measurements have passed innovation consistency check bool rngBcnTimeout; // boolean true if range beacon measurements have failed innovation consistency checks for too long float varInnovRngBcn; // range beacon observation innovation variance (m^2) float innovRngBcn; // range beacon observation innovation (m) uint32_t lastTimeRngBcn_ms[10]; // last time we received a range beacon measurement (msec) bool rngBcnDataToFuse; // true when there is new range beacon data to fuse Vector3f beaconVehiclePosNED; // NED position estimate from the beacon system (NED) float beaconVehiclePosErr; // estimated position error from the beacon system (m) uint32_t rngBcnLast3DmeasTime_ms; // last time the beacon system returned a 3D fix (msec) bool rngBcnGoodToAlign; // true when the range beacon systems 3D fix can be used to align the filter uint8_t lastRngBcnChecked; // index of the last range beacon checked for data Vector3f receiverPos; // receiver NED position (m) - alignment 3 state filter float receiverPosCov[3][3]; // Receiver position covariance (m^2) - alignment 3 state filter ( bool rngBcnAlignmentStarted; // True when the initial position alignment using range measurements has started bool rngBcnAlignmentCompleted; // True when the initial position alignment using range measurements has finished uint8_t lastBeaconIndex; // Range beacon index last read - used during initialisation of the 3-state filter Vector3f rngBcnPosSum; // Sum of range beacon NED position (m) - used during initialisation of the 3-state filter uint8_t numBcnMeas; // Number of beacon measurements - used during initialisation of the 3-state filter float rngSum; // Sum of range measurements (m) - used during initialisation of the 3-state filter uint8_t N_beacons; // Number of range beacons in use float maxBcnPosD; // maximum position of all beacons in the down direction (m) float minBcnPosD; // minimum position of all beacons in the down direction (m) bool usingMinHypothesis; // true when the min beacon constellation offset hypothesis is being used float bcnPosDownOffsetMax; // Vertical position offset of the beacon constellation origin relative to the EKF origin (m) float bcnPosOffsetMaxVar; // Variance of the bcnPosDownOffsetMax state (m) float maxOffsetStateChangeFilt; // Filtered magnitude of the change in bcnPosOffsetHigh float bcnPosDownOffsetMin; // Vertical position offset of the beacon constellation origin relative to the EKF origin (m) float bcnPosOffsetMinVar; // Variance of the bcnPosDownOffsetMin state (m) float minOffsetStateChangeFilt; // Filtered magnitude of the change in bcnPosOffsetLow Vector3f bcnPosOffsetNED; // NED position of the beacon origin in earth frame (m) bool bcnOriginEstInit; // True when the beacon origin has been initialised // Range Beacon Fusion Debug Reporting uint8_t rngBcnFuseDataReportIndex;// index of range beacon fusion data last reported struct { float rng; // measured range to beacon (m) float innov; // range innovation (m) float innovVar; // innovation variance (m^2) float testRatio; // innovation consistency test ratio Vector3f beaconPosNED; // beacon NED position } rngBcnFusionReport[10]; // height source selection logic uint8_t activeHgtSource; // integer defining active height source // Movement detector bool takeOffDetected; // true when takeoff for optical flow navigation has been detected float rngAtStartOfFlight; // range finder measurement at start of flight uint32_t timeAtArming_ms; // time in msec that the vehicle armed // baro ground effect bool expectGndEffectTakeoff; // external state from ArduCopter - takeoff expected uint32_t takeoffExpectedSet_ms; // system time at which expectGndEffectTakeoff was set bool expectGndEffectTouchdown; // external state from ArduCopter - touchdown expected uint32_t touchdownExpectedSet_ms; // system time at which expectGndEffectTouchdown was set float meaHgtAtTakeOff; // height measured at commencement of takeoff // control of post takeoff magentic field and heading resets bool finalInflightYawInit; // true when the final post takeoff initialisation of yaw angle has been performed bool finalInflightMagInit; // true when the final post takeoff initialisation of magnetic field states been performed bool magStateResetRequest; // true if magnetic field states need to be reset using the magnetomter measurements bool magYawResetRequest; // true if the vehicle yaw and magnetic field states need to be reset using the magnetometer measurements bool gpsYawResetRequest; // true if the vehicle yaw needs to be reset to the GPS course float posDownAtLastMagReset; // vertical position last time the mag states were reset (m) float yawInnovAtLastMagReset; // magnetic yaw innovation last time the yaw and mag field states were reset (rad) Quaternion quatAtLastMagReset; // quaternion states last time the mag states were reset // flags indicating severe numerical errors in innovation variance calculation for different fusion operations struct { bool bad_xmag:1; bool bad_ymag:1; bool bad_zmag:1; bool bad_airspeed:1; bool bad_sideslip:1; bool bad_nvel:1; bool bad_evel:1; bool bad_dvel:1; bool bad_npos:1; bool bad_epos:1; bool bad_dpos:1; bool bad_yaw:1; bool bad_decl:1; bool bad_xflow:1; bool bad_yflow:1; bool bad_rngbcn:1; bool bad_xvel:1; bool bad_yvel:1; bool bad_zvel:1; } faultStatus; // flags indicating which GPS quality checks are failing struct { bool bad_sAcc:1; bool bad_hAcc:1; bool bad_vAcc:1; bool bad_yaw:1; bool bad_sats:1; bool bad_VZ:1; bool bad_horiz_drift:1; bool bad_hdop:1; bool bad_vert_vel:1; bool bad_fix:1; bool bad_horiz_vel:1; } gpsCheckStatus; // states held by magnetometer fusion across time steps // magnetometer X,Y,Z measurements are fused across three time steps // to level computational load as this is an expensive operation struct { ftype q0; ftype q1; ftype q2; ftype q3; ftype magN; ftype magE; ftype magD; ftype magXbias; ftype magYbias; ftype magZbias; uint8_t obsIndex; Matrix3f DCM; Vector3f MagPred; ftype R_MAG; Vector9 SH_MAG; } mag_state; // string representing last reason for prearm failure char prearm_fail_string[40]; // performance counters AP_HAL::Util::perf_counter_t _perf_UpdateFilter; AP_HAL::Util::perf_counter_t _perf_CovariancePrediction; AP_HAL::Util::perf_counter_t _perf_FuseVelPosNED; AP_HAL::Util::perf_counter_t _perf_FuseMagnetometer; AP_HAL::Util::perf_counter_t _perf_FuseAirspeed; AP_HAL::Util::perf_counter_t _perf_FuseSideslip; AP_HAL::Util::perf_counter_t _perf_TerrainOffset; AP_HAL::Util::perf_counter_t _perf_FuseOptFlow; AP_HAL::Util::perf_counter_t _perf_FuseBodyOdom; AP_HAL::Util::perf_counter_t _perf_test[10]; // timing statistics struct ekf_timing timing; // should we assume zero sideslip? bool assume_zero_sideslip(void) const; // vehicle specific initial gyro bias uncertainty float InitialGyroBiasUncertainty(void) const; };