/* AP_Logger logging - file oriented variant This uses posix file IO to create log files called logs/NN.bin in the given directory SD Card Rates on PixHawk: - deletion rate seems to be ~50 files/second. - stat seems to be ~150/second - readdir loop of 511 entry directory ~62,000 microseconds */ #include #include #if HAVE_FILESYSTEM_SUPPORT #include "AP_Logger_File.h" #include #include #include #include #include #include extern const AP_HAL::HAL& hal; #define MAX_LOG_FILES 500U #define LOGGER_PAGE_SIZE 1024UL #ifndef HAL_LOGGER_WRITE_CHUNK_SIZE #define HAL_LOGGER_WRITE_CHUNK_SIZE 4096 #endif /* constructor */ AP_Logger_File::AP_Logger_File(AP_Logger &front, LoggerMessageWriter_DFLogStart *writer, const char *log_directory) : AP_Logger_Backend(front, writer), _write_fd(-1), _read_fd(-1), _log_directory(log_directory), _writebuf(0), _writebuf_chunk(HAL_LOGGER_WRITE_CHUNK_SIZE), _perf_write(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "DF_write")), _perf_fsync(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "DF_fsync")), _perf_errors(hal.util->perf_alloc(AP_HAL::Util::PC_COUNT, "DF_errors")), _perf_overruns(hal.util->perf_alloc(AP_HAL::Util::PC_COUNT, "DF_overruns")) { df_stats_clear(); } void AP_Logger_File::Init() { AP_Logger_Backend::Init(); // create the log directory if need be int ret; struct stat st; const char* custom_dir = hal.util->get_custom_log_directory(); if (custom_dir != nullptr){ _log_directory = custom_dir; } EXPECT_DELAY_MS(3000); ret = AP::FS().stat(_log_directory, &st); if (ret == -1) { ret = AP::FS().mkdir(_log_directory); } if (ret == -1 && errno != EEXIST) { printf("Failed to create log directory %s : %s\n", _log_directory, strerror(errno)); } // determine and limit file backend buffersize uint32_t bufsize = _front._params.file_bufsize; if (bufsize > 64) { bufsize = 64; // PixHawk has DMA limitations. } bufsize *= 1024; const uint32_t desired_bufsize = bufsize; // If we can't allocate the full size, try to reduce it until we can allocate it while (!_writebuf.set_size(bufsize) && bufsize >= _writebuf_chunk) { bufsize *= 0.9; } if (bufsize >= _writebuf_chunk && bufsize != desired_bufsize) { hal.console->printf("AP_Logger: reduced buffer %u/%u\n", (unsigned)bufsize, (unsigned)desired_bufsize); } if (!_writebuf.get_size()) { hal.console->printf("Out of memory for logging\n"); return; } hal.console->printf("AP_Logger_File: buffer size=%u\n", (unsigned)bufsize); _initialised = true; hal.scheduler->register_io_process(FUNCTOR_BIND_MEMBER(&AP_Logger_File::_io_timer, void)); } bool AP_Logger_File::file_exists(const char *filename) const { struct stat st; EXPECT_DELAY_MS(3000); if (AP::FS().stat(filename, &st) == -1) { // hopefully errno==ENOENT. If some error occurs it is // probably better to assume this file exists. return false; } return true; } bool AP_Logger_File::log_exists(const uint16_t lognum) const { char *filename = _log_file_name(lognum); if (filename == nullptr) { return false; // ?! } bool ret = file_exists(filename); free(filename); return ret; } void AP_Logger_File::periodic_1Hz() { if (_rotate_pending && !logging_enabled()) { _rotate_pending = false; // handle log rotation once we stop logging stop_logging(); } if (!io_thread_alive()) { if (io_thread_warning_decimation_counter == 0 && _initialised) { // we don't print this error unless we did initialise. When _initialised is set to true // we register the IO timer callback gcs().send_text(MAV_SEVERITY_CRITICAL, "AP_Logger: stuck thread (%s)", last_io_operation); } if (io_thread_warning_decimation_counter++ > 57) { io_thread_warning_decimation_counter = 0; } // If you try to close the file here then it will almost // certainly block. Since this is the main thread, this is // likely to cause a crash. // semaphore_write_fd not taken here as if the io thread is // dead it may not release lock... _write_fd = -1; _initialised = false; } df_stats_log(); } void AP_Logger_File::periodic_fullrate() { AP_Logger_Backend::push_log_blocks(); } uint32_t AP_Logger_File::bufferspace_available() { const uint32_t space = _writebuf.space(); const uint32_t crit = critical_message_reserved_space(); return (space > crit) ? space - crit : 0; } // return true for CardInserted() if we successfully initialized bool AP_Logger_File::CardInserted(void) const { return _initialised && !_open_error; } // returns the amount of disk space available in _log_directory (in bytes) // returns -1 on error int64_t AP_Logger_File::disk_space_avail() { return AP::FS().disk_free(_log_directory); } // returns the total amount of disk space (in use + available) in // _log_directory (in bytes). // returns -1 on error int64_t AP_Logger_File::disk_space() { return AP::FS().disk_space(_log_directory); } // returns the available space in _log_directory as a percentage // returns -1.0f on error float AP_Logger_File::avail_space_percent() { int64_t avail = disk_space_avail(); if (avail == -1) { return -1.0f; } int64_t space = disk_space(); if (space == -1) { return -1.0f; } return (avail/(float)space) * 100; } // find_oldest_log - find oldest log in _log_directory // returns 0 if no log was found uint16_t AP_Logger_File::find_oldest_log() { if (_cached_oldest_log != 0) { return _cached_oldest_log; } uint16_t last_log_num = find_last_log(); if (last_log_num == 0) { return 0; } uint16_t current_oldest_log = 0; // 0 is invalid // We could count up to find_last_log(), but if people start // relying on the min_avail_space_percent feature we could end up // doing a *lot* of asprintf()s and stat()s EXPECT_DELAY_MS(3000); DIR *d = AP::FS().opendir(_log_directory); if (d == nullptr) { // SD card may have died? On linux someone may have rm-rf-d return 0; } // we only remove files which look like xxx.BIN EXPECT_DELAY_MS(3000); for (struct dirent *de=AP::FS().readdir(d); de; de=AP::FS().readdir(d)) { EXPECT_DELAY_MS(3000); uint8_t length = strlen(de->d_name); if (length < 5) { // not long enough for \d+[.]BIN continue; } if (strncmp(&de->d_name[length-4], ".BIN", 4)) { // doesn't end in .BIN continue; } uint16_t thisnum = strtoul(de->d_name, nullptr, 10); if (thisnum > MAX_LOG_FILES) { // ignore files above our official maximum... continue; } if (current_oldest_log == 0) { current_oldest_log = thisnum; } else { if (current_oldest_log <= last_log_num) { if (thisnum > last_log_num) { current_oldest_log = thisnum; } else if (thisnum < current_oldest_log) { current_oldest_log = thisnum; } } else { // current_oldest_log > last_log_num if (thisnum > last_log_num) { if (thisnum < current_oldest_log) { current_oldest_log = thisnum; } } } } } AP::FS().closedir(d); _cached_oldest_log = current_oldest_log; return current_oldest_log; } void AP_Logger_File::Prep_MinSpace() { if (hal.util->was_watchdog_reset()) { // don't clear space if watchdog reset, it takes too long return; } const uint16_t first_log_to_remove = find_oldest_log(); if (first_log_to_remove == 0) { // no files to remove return; } _cached_oldest_log = 0; uint16_t log_to_remove = first_log_to_remove; uint16_t count = 0; do { float avail = avail_space_percent(); if (is_equal(avail, -1.0f)) { break; } if (avail >= min_avail_space_percent) { break; } if (count++ > MAX_LOG_FILES+10) { // *way* too many deletions going on here. Possible internal error. AP::internalerror().error(AP_InternalError::error_t::logger_too_many_deletions); break; } char *filename_to_remove = _log_file_name(log_to_remove); if (filename_to_remove == nullptr) { AP::internalerror().error(AP_InternalError::error_t::logger_bad_getfilename); break; } if (file_exists(filename_to_remove)) { hal.console->printf("Removing (%s) for minimum-space requirements (%.2f%% < %.0f%%)\n", filename_to_remove, (double)avail, (double)min_avail_space_percent); EXPECT_DELAY_MS(2000); if (AP::FS().unlink(filename_to_remove) == -1) { hal.console->printf("Failed to remove %s: %s\n", filename_to_remove, strerror(errno)); free(filename_to_remove); if (errno == ENOENT) { // corruption - should always have a continuous // sequence of files... however, there may be still // files out there, so keep going. } else { break; } } else { free(filename_to_remove); } } log_to_remove++; if (log_to_remove > MAX_LOG_FILES) { log_to_remove = 1; } } while (log_to_remove != first_log_to_remove); } void AP_Logger_File::Prep() { if (!NeedPrep()) { return; } if (hal.util->get_soft_armed()) { // do not want to do any filesystem operations while we are e.g. flying return; } Prep_MinSpace(); } bool AP_Logger_File::NeedPrep() { if (!CardInserted()) { // should not have been called?! return false; } if (avail_space_percent() < min_avail_space_percent) { return true; } return false; } /* construct a log file name given a log number. The number in the log filename will *not* be zero-padded. Note: Caller must free. */ char *AP_Logger_File::_log_file_name_short(const uint16_t log_num) const { char *buf = nullptr; if (asprintf(&buf, "%s/%u.BIN", _log_directory, (unsigned)log_num) == -1) { return nullptr; } return buf; } /* construct a log file name given a log number. The number in the log filename will be zero-padded. Note: Caller must free. */ char *AP_Logger_File::_log_file_name_long(const uint16_t log_num) const { char *buf = nullptr; if (asprintf(&buf, "%s/%08u.BIN", _log_directory, (unsigned)log_num) == -1) { return nullptr; } return buf; } /* return a log filename appropriate for the supplied log_num if a filename exists with the short (not-zero-padded name) then it is the appropirate name, otherwise the long (zero-padded) version is. Note: Caller must free. */ char *AP_Logger_File::_log_file_name(const uint16_t log_num) const { char *filename = _log_file_name_short(log_num); if (filename == nullptr) { return nullptr; } if (file_exists(filename)) { return filename; } free(filename); return _log_file_name_long(log_num); } /* return path name of the lastlog.txt marker file Note: Caller must free. */ char *AP_Logger_File::_lastlog_file_name(void) const { char *buf = nullptr; if (asprintf(&buf, "%s/LASTLOG.TXT", _log_directory) == -1) { return nullptr; } return buf; } // remove all log files void AP_Logger_File::EraseAll() { if (hal.util->get_soft_armed()) { // do not want to do any filesystem operations while we are e.g. flying return; } if (!_initialised) { return; } const bool was_logging = (_write_fd != -1); stop_logging(); for (uint16_t log_num=1; log_num<=MAX_LOG_FILES; log_num++) { char *fname = _log_file_name(log_num); if (fname == nullptr) { break; } EXPECT_DELAY_MS(3000); AP::FS().unlink(fname); free(fname); } char *fname = _lastlog_file_name(); if (fname != nullptr) { AP::FS().unlink(fname); free(fname); } _cached_oldest_log = 0; if (was_logging) { start_new_log(); } } bool AP_Logger_File::WritesOK() const { if (_write_fd == -1) { return false; } if (_open_error) { return false; } return true; } bool AP_Logger_File::StartNewLogOK() const { if (_open_error) { return false; } return AP_Logger_Backend::StartNewLogOK(); } /* Write a block of data at current offset */ bool AP_Logger_File::_WritePrioritisedBlock(const void *pBuffer, uint16_t size, bool is_critical) { if (! WriteBlockCheckStartupMessages()) { _dropped++; return false; } if (!semaphore.take(1)) { return false; } uint32_t space = _writebuf.space(); if (_writing_startup_messages && _startup_messagewriter->fmt_done()) { // the state machine has called us, and it has finished // writing format messages out. It can always get back to us // with more messages later, so let's leave room for other // things: const uint32_t now = AP_HAL::millis(); const bool must_dribble = (now - last_messagewrite_message_sent) > 100; if (!must_dribble && space < non_messagewriter_message_reserved_space()) { // this message isn't dropped, it will be sent again... semaphore.give(); return false; } last_messagewrite_message_sent = now; } else { // we reserve some amount of space for critical messages: if (!is_critical && space < critical_message_reserved_space()) { _dropped++; semaphore.give(); return false; } } // if no room for entire message - drop it: if (space < size) { hal.util->perf_count(_perf_overruns); _dropped++; semaphore.give(); return false; } _writebuf.write((uint8_t*)pBuffer, size); df_stats_gather(size); semaphore.give(); return true; } /* find the highest log number */ uint16_t AP_Logger_File::find_last_log() { unsigned ret = 0; char *fname = _lastlog_file_name(); if (fname == nullptr) { return ret; } EXPECT_DELAY_MS(3000); int fd = AP::FS().open(fname, O_RDONLY); free(fname); if (fd != -1) { char buf[10]; memset(buf, 0, sizeof(buf)); if (AP::FS().read(fd, buf, sizeof(buf)-1) > 0) { ret = strtol(buf, NULL, 10); } AP::FS().close(fd); } return ret; } uint32_t AP_Logger_File::_get_log_size(const uint16_t log_num) { char *fname = _log_file_name(log_num); if (fname == nullptr) { return 0; } if (_write_fd != -1 && write_fd_semaphore.take_nonblocking()) { if (_write_filename != nullptr && strcmp(_write_filename, fname) == 0) { // it is the file we are currently writing free(fname); write_fd_semaphore.give(); return _write_offset; } write_fd_semaphore.give(); } struct stat st; EXPECT_DELAY_MS(3000); if (AP::FS().stat(fname, &st) != 0) { printf("Unable to fetch Log File Size: %s\n", strerror(errno)); free(fname); return 0; } free(fname); return st.st_size; } uint32_t AP_Logger_File::_get_log_time(const uint16_t log_num) { char *fname = _log_file_name(log_num); if (fname == nullptr) { return 0; } if (_write_fd != -1 && write_fd_semaphore.take_nonblocking()) { if (_write_filename != nullptr && strcmp(_write_filename, fname) == 0) { // it is the file we are currently writing free(fname); write_fd_semaphore.give(); uint64_t utc_usec; if (!AP::rtc().get_utc_usec(utc_usec)) { return 0; } return utc_usec / 1000000U; } write_fd_semaphore.give(); } struct stat st; EXPECT_DELAY_MS(3000); if (AP::FS().stat(fname, &st) != 0) { free(fname); return 0; } free(fname); return st.st_mtime; } /* convert a list entry number back into a log number (which can then be converted into a filename). A "list entry number" is a sequence where the oldest log has a number of 1, the second-from-oldest 2, and so on. Thus the highest list entry number is equal to the number of logs. */ uint16_t AP_Logger_File::_log_num_from_list_entry(const uint16_t list_entry) { uint16_t oldest_log = find_oldest_log(); if (oldest_log == 0) { // We don't have any logs... return 0; } uint32_t log_num = oldest_log + list_entry - 1; if (log_num > MAX_LOG_FILES) { log_num -= MAX_LOG_FILES; } return (uint16_t)log_num; } /* find the number of pages in a log */ void AP_Logger_File::get_log_boundaries(const uint16_t list_entry, uint32_t & start_page, uint32_t & end_page) { const uint16_t log_num = _log_num_from_list_entry(list_entry); if (log_num == 0) { // that failed - probably no logs start_page = 0; end_page = 0; return; } start_page = 0; end_page = _get_log_size(log_num) / LOGGER_PAGE_SIZE; } /* retrieve data from a log file */ int16_t AP_Logger_File::get_log_data(const uint16_t list_entry, const uint16_t page, const uint32_t offset, const uint16_t len, uint8_t *data) { if (!_initialised || _open_error) { return -1; } const uint16_t log_num = _log_num_from_list_entry(list_entry); if (log_num == 0) { // that failed - probably no logs return -1; } if (_read_fd != -1 && log_num != _read_fd_log_num) { AP::FS().close(_read_fd); _read_fd = -1; } if (_read_fd == -1) { char *fname = _log_file_name(log_num); if (fname == nullptr) { return -1; } stop_logging(); EXPECT_DELAY_MS(3000); _read_fd = AP::FS().open(fname, O_RDONLY); if (_read_fd == -1) { _open_error = true; int saved_errno = errno; ::printf("Log read open fail for %s - %s\n", fname, strerror(saved_errno)); hal.console->printf("Log read open fail for %s - %s\n", fname, strerror(saved_errno)); free(fname); return -1; } free(fname); _read_offset = 0; _read_fd_log_num = log_num; } uint32_t ofs = page * (uint32_t)LOGGER_PAGE_SIZE + offset; /* this rather strange bit of code is here to work around a bug in file offsets in NuttX. Every few hundred blocks of reads (starting at around 350k into a file) NuttX will get the wrong offset for sequential reads. The offset it gets is typically 128k earlier than it should be. It turns out that calling lseek() with 0 offset and SEEK_CUR works around the bug. We can remove this once we find the real bug. */ if (ofs / 4096 != (ofs+len) / 4096) { off_t seek_current = AP::FS().lseek(_read_fd, 0, SEEK_CUR); if (seek_current == (off_t)-1) { AP::FS().close(_read_fd); _read_fd = -1; return -1; } if (seek_current != (off_t)_read_offset) { if (AP::FS().lseek(_read_fd, _read_offset, SEEK_SET) == (off_t)-1) { AP::FS().close(_read_fd); _read_fd = -1; return -1; } } } if (ofs != _read_offset) { if (AP::FS().lseek(_read_fd, ofs, SEEK_SET) == (off_t)-1) { AP::FS().close(_read_fd); _read_fd = -1; return -1; } _read_offset = ofs; } int16_t ret = (int16_t)AP::FS().read(_read_fd, data, len); if (ret > 0) { _read_offset += ret; } return ret; } /* find size and date of a log */ void AP_Logger_File::get_log_info(const uint16_t list_entry, uint32_t &size, uint32_t &time_utc) { uint16_t log_num = _log_num_from_list_entry(list_entry); if (log_num == 0) { // that failed - probably no logs size = 0; time_utc = 0; return; } size = _get_log_size(log_num); time_utc = _get_log_time(log_num); } /* get the number of logs - note that the log numbers must be consecutive */ uint16_t AP_Logger_File::get_num_logs() { uint16_t ret = 0; uint16_t high = find_last_log(); uint16_t i; for (i=high; i>0; i--) { if (! log_exists(i)) { break; } ret++; } if (i == 0) { for (i=MAX_LOG_FILES; i>high; i--) { if (! log_exists(i)) { break; } ret++; } } return ret; } /* stop logging */ void AP_Logger_File::stop_logging(void) { // best-case effort to avoid annoying the IO thread const bool have_sem = write_fd_semaphore.take(hal.util->get_soft_armed()?1:20); if (_write_fd != -1) { int fd = _write_fd; _write_fd = -1; AP::FS().close(fd); } if (have_sem) { write_fd_semaphore.give(); } } void AP_Logger_File::PrepForArming() { if (logging_started()) { return; } start_new_log(); } /* start writing to a new log file */ uint16_t AP_Logger_File::start_new_log(void) { stop_logging(); start_new_log_reset_variables(); if (_open_error) { // we have previously failed to open a file - don't try again // to prevent us trying to open files while in flight return 0xFFFF; } if (_read_fd != -1) { AP::FS().close(_read_fd); _read_fd = -1; } if (disk_space_avail() < _free_space_min_avail && disk_space() > 0) { hal.console->printf("Out of space for logging\n"); _open_error = true; return 0xffff; } uint16_t log_num = find_last_log(); // re-use empty logs if possible if (_get_log_size(log_num) > 0 || log_num == 0) { log_num++; } if (log_num > MAX_LOG_FILES) { log_num = 1; } if (!write_fd_semaphore.take(1)) { _open_error = true; return 0xFFFF; } if (_write_filename) { free(_write_filename); _write_filename = nullptr; } _write_filename = _log_file_name(log_num); if (_write_filename == nullptr) { _open_error = true; write_fd_semaphore.give(); return 0xFFFF; } #if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS // remember if we had utc time when we opened the file uint64_t utc_usec; _need_rtc_update = !AP::rtc().get_utc_usec(utc_usec); #endif EXPECT_DELAY_MS(3000); _write_fd = AP::FS().open(_write_filename, O_WRONLY|O_CREAT|O_TRUNC); _cached_oldest_log = 0; if (_write_fd == -1) { _initialised = false; _open_error = true; write_fd_semaphore.give(); int saved_errno = errno; ::printf("Log open fail for %s - %s\n", _write_filename, strerror(saved_errno)); hal.console->printf("Log open fail for %s - %s\n", _write_filename, strerror(saved_errno)); return 0xFFFF; } _last_write_ms = AP_HAL::millis(); _write_offset = 0; _writebuf.clear(); write_fd_semaphore.give(); // now update lastlog.txt with the new log number char *fname = _lastlog_file_name(); // we avoid fopen()/fprintf() here as it is not available on as many // systems as open/write EXPECT_DELAY_MS(3000); int fd = AP::FS().open(fname, O_WRONLY|O_CREAT); free(fname); if (fd == -1) { _open_error = true; return 0xFFFF; } char buf[30]; snprintf(buf, sizeof(buf), "%u\r\n", (unsigned)log_num); const ssize_t to_write = strlen(buf); const ssize_t written = AP::FS().write(fd, buf, to_write); AP::FS().close(fd); if (written < to_write) { _open_error = true; return 0xFFFF; } return log_num; } #if CONFIG_HAL_BOARD == HAL_BOARD_SITL || CONFIG_HAL_BOARD == HAL_BOARD_LINUX void AP_Logger_File::flush(void) #if APM_BUILD_TYPE(APM_BUILD_Replay) || APM_BUILD_TYPE(APM_BUILD_UNKNOWN) { uint32_t tnow = AP_HAL::millis(); while (_write_fd != -1 && _initialised && !_open_error && _writebuf.available()) { // convince the IO timer that it really is OK to write out // less than _writebuf_chunk bytes: if (tnow > 2001) { // avoid resetting _last_write_time to 0 _last_write_time = tnow - 2001; } _io_timer(); } if (write_fd_semaphore.take(1)) { if (_write_fd != -1) { ::fsync(_write_fd); } write_fd_semaphore.give(); } else { AP::internalerror().error(AP_InternalError::error_t::logger_flushing_without_sem); } } #else { // flush is for replay and examples only } #endif // APM_BUILD_TYPE(APM_BUILD_Replay) || APM_BUILD_TYPE(APM_BUILD_UNKNOWN) #endif void AP_Logger_File::_io_timer(void) { uint32_t tnow = AP_HAL::millis(); _io_timer_heartbeat = tnow; if (_write_fd == -1 || !_initialised || _open_error) { return; } uint32_t nbytes = _writebuf.available(); if (nbytes == 0) { return; } if (nbytes < _writebuf_chunk && tnow - _last_write_time < 2000UL) { // write in _writebuf_chunk-sized chunks, but always write at // least once per 2 seconds if data is available return; } if (tnow - _free_space_last_check_time > _free_space_check_interval) { _free_space_last_check_time = tnow; last_io_operation = "disk_space_avail"; if (disk_space_avail() < _free_space_min_avail && disk_space() > 0) { hal.console->printf("Out of space for logging\n"); stop_logging(); _open_error = true; // prevent logging starting again last_io_operation = ""; return; } last_io_operation = ""; } hal.util->perf_begin(_perf_write); _last_write_time = tnow; if (nbytes > _writebuf_chunk) { // be kind to the filesystem layer nbytes = _writebuf_chunk; } uint32_t size; const uint8_t *head = _writebuf.readptr(size); nbytes = MIN(nbytes, size); // try to align writes on a 512 byte boundary to avoid filesystem reads if ((nbytes + _write_offset) % 512 != 0) { uint32_t ofs = (nbytes + _write_offset) % 512; if (ofs < nbytes) { nbytes -= ofs; } } last_io_operation = "write"; if (!write_fd_semaphore.take(1)) { return; } if (_write_fd == -1) { write_fd_semaphore.give(); return; } ssize_t nwritten = AP::FS().write(_write_fd, head, nbytes); last_io_operation = ""; if (nwritten <= 0) { if ((tnow - _last_write_ms)/1000U > unsigned(_front._params.file_timeout)) { // if we can't write for LOG_FILE_TIMEOUT seconds we give up and close // the file. This allows us to cope with temporary write // failures caused by directory listing hal.util->perf_count(_perf_errors); last_io_operation = "close"; AP::FS().close(_write_fd); last_io_operation = ""; _write_fd = -1; _initialised = false; printf("Failed to write to File: %s\n", strerror(errno)); } _last_write_failed = true; } else { _last_write_failed = false; _last_write_ms = tnow; _write_offset += nwritten; _writebuf.advance(nwritten); /* the best strategy for minimizing corruption on microSD cards seems to be to write in 4k chunks and fsync the file on each chunk, ensuring the directory entry is updated after each write. */ #if CONFIG_HAL_BOARD != HAL_BOARD_SITL && CONFIG_HAL_BOARD_SUBTYPE != HAL_BOARD_SUBTYPE_LINUX_NONE last_io_operation = "fsync"; AP::FS().fsync(_write_fd); last_io_operation = ""; #endif #if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS // ChibiOS does not update mtime on writes, so if we opened // without knowing the time we should update it later if (_need_rtc_update) { uint64_t utc_usec; if (AP::rtc().get_utc_usec(utc_usec)) { AP::FS().set_mtime(_write_filename, utc_usec/(1000U*1000U)); _need_rtc_update = false; } } #endif } write_fd_semaphore.give(); hal.util->perf_end(_perf_write); } // this sensor is enabled if we should be logging at the moment bool AP_Logger_File::logging_enabled() const { if (hal.util->get_soft_armed() || _front.log_while_disarmed()) { return true; } return false; } bool AP_Logger_File::io_thread_alive() const { // if the io thread hasn't had a heartbeat in a full seconds then it is dead // this is enough time for a sdcard remount return (AP_HAL::millis() - _io_timer_heartbeat) < 3000U; } bool AP_Logger_File::logging_failed() const { if (!_initialised) { return true; } if (_open_error) { return true; } if (!io_thread_alive()) { // No heartbeat in a second. IO thread is dead?! Very Not // Good. return true; } if (_last_write_failed) { return true; } return false; } void AP_Logger_File::vehicle_was_disarmed() { if (_front._params.file_disarm_rot) { // rotate our log. Closing the current one and letting the // logging restart naturally based on log_disarmed should do // the trick: _rotate_pending = true; } } void AP_Logger_File::Write_AP_Logger_Stats_File(const struct df_stats &_stats) { struct log_DSF pkt = { LOG_PACKET_HEADER_INIT(LOG_DF_FILE_STATS), time_us : AP_HAL::micros64(), dropped : _dropped, blocks : _stats.blocks, bytes : _stats.bytes, buf_space_min : _stats.buf_space_min, buf_space_max : _stats.buf_space_max, buf_space_avg : (_stats.blocks) ? (_stats.buf_space_sigma / _stats.blocks) : 0, }; WriteBlock(&pkt, sizeof(pkt)); } void AP_Logger_File::df_stats_gather(const uint16_t bytes_written) { const uint32_t space_remaining = _writebuf.space(); if (space_remaining < stats.buf_space_min) { stats.buf_space_min = space_remaining; } if (space_remaining > stats.buf_space_max) { stats.buf_space_max = space_remaining; } stats.buf_space_sigma += space_remaining; stats.bytes += bytes_written; stats.blocks++; } void AP_Logger_File::df_stats_clear() { memset(&stats, '\0', sizeof(stats)); stats.buf_space_min = -1; } void AP_Logger_File::df_stats_log() { Write_AP_Logger_Stats_File(stats); df_stats_clear(); } #endif // HAVE_FILESYSTEM_SUPPORT