/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "AP_Baro_LPS2XH.h" #include extern const AP_HAL::HAL &hal; // WHOAMI values #define LPS22HB_WHOAMI 0xB1 #define LPS25HB_WHOAMI 0xBD #define REG_ID 0x0F #define LPS22H_ID 0xB1 #define LPS22H_CTRL_REG1 0x10 #define LPS22H_CTRL_REG2 0x11 #define LPS22H_CTRL_REG3 0x12 #define LPS22H_CTRL_REG1_SIM (1 << 0) #define LPS22H_CTRL_REG1_BDU (1 << 1) #define LPS22H_CTRL_REG1_LPFP_CFG (1 << 2) #define LPS22H_CTRL_REG1_EN_LPFP (1 << 3) #define LPS22H_CTRL_REG1_PD (0 << 4) #define LPS22H_CTRL_REG1_ODR_1HZ (1 << 4) #define LPS22H_CTRL_REG1_ODR_10HZ (2 << 4) #define LPS22H_CTRL_REG1_ODR_25HZ (3 << 4) #define LPS22H_CTRL_REG1_ODR_50HZ (4 << 4) #define LPS22H_CTRL_REG1_ODR_75HZ (5 << 4) #define LPS25H_CTRL_REG1_ADDR 0x20 #define LPS25H_CTRL_REG2_ADDR 0x21 #define LPS25H_CTRL_REG3_ADDR 0x22 #define LPS25H_CTRL_REG4_ADDR 0x23 #define LPS25H_FIFO_CTRL 0x2E #define TEMP_OUT_ADDR 0x2B #define PRESS_OUT_XL_ADDR 0x28 #define STATUS_ADDR 0x27 //putting 1 in the MSB of those two registers turns on Auto increment for faster reading. AP_Baro_LPS2XH::AP_Baro_LPS2XH(AP_Baro &baro, AP_HAL::OwnPtr dev) : AP_Baro_Backend(baro) , _dev(std::move(dev)) { } AP_Baro_Backend *AP_Baro_LPS2XH::probe(AP_Baro &baro, AP_HAL::OwnPtr dev) { if (!dev) { return nullptr; } AP_Baro_LPS2XH *sensor = new AP_Baro_LPS2XH(baro, std::move(dev)); if (!sensor || !sensor->_init()) { delete sensor; return nullptr; } return sensor; } AP_Baro_Backend *AP_Baro_LPS2XH::probe_InvensenseIMU(AP_Baro &baro, AP_HAL::OwnPtr dev, uint8_t imu_address) { if (!dev) { return nullptr; } AP_Baro_LPS2XH *sensor = new AP_Baro_LPS2XH(baro, std::move(dev)); if (sensor) { if (!sensor->_imu_i2c_init(imu_address)) { delete sensor; return nullptr; } } if (!sensor || !sensor->_init()) { delete sensor; return nullptr; } return sensor; } /* setup invensense IMU to enable barometer, assuming both IMU and baro on the same i2c bus */ bool AP_Baro_LPS2XH::_imu_i2c_init(uint8_t imu_address) { if (!_dev->get_semaphore()->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { return false; } // as the baro device is already locked we need to re-use it, // changing its address to match the IMU address uint8_t old_address = _dev->get_bus_address(); _dev->set_address(imu_address); _dev->set_retries(4); uint8_t whoami=0; _dev->read_registers(MPUREG_WHOAMI, &whoami, 1); hal.console->printf("IMU: whoami 0x%02x old_address=%02x\n", whoami, old_address); _dev->write_register(MPUREG_FIFO_EN, 0x00); _dev->write_register(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_XGYRO); // wait for sensor to settle hal.scheduler->delay(10); _dev->write_register(MPUREG_INT_PIN_CFG, BIT_BYPASS_EN); _dev->set_address(old_address); _dev->get_semaphore()->give(); return true; } bool AP_Baro_LPS2XH::_init() { if (!_dev || !_dev->get_semaphore()->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { return false; } _has_sample = false; _dev->set_speed(AP_HAL::Device::SPEED_HIGH); // top bit is for read on SPI _dev->set_read_flag(0x80); if(!_check_whoami()){ _dev->get_semaphore()->give(); return false; } //init control registers. if(_lps2xh_type == BARO_LPS25H){ _dev->write_register(LPS25H_CTRL_REG1_ADDR,0x00); // turn off for config _dev->write_register(LPS25H_CTRL_REG2_ADDR,0x00); //FIFO Disabled _dev->write_register(LPS25H_FIFO_CTRL, 0x01); _dev->write_register(LPS25H_CTRL_REG1_ADDR,0xc0); // request 25Hz update (maximum refresh Rate according to datasheet) CallTime = 40 * AP_USEC_PER_MSEC; } if(_lps2xh_type == BARO_LPS22H){ _dev->write_register(LPS22H_CTRL_REG1, 0x00); // turn off for config _dev->write_register(LPS22H_CTRL_REG1, LPS22H_CTRL_REG1_ODR_75HZ|LPS22H_CTRL_REG1_BDU|LPS22H_CTRL_REG1_EN_LPFP|LPS22H_CTRL_REG1_LPFP_CFG); if (_dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) { _dev->write_register(LPS22H_CTRL_REG2, 0x18); // disable i2c } else { _dev->write_register(LPS22H_CTRL_REG2, 0x10); } // request 75Hz update CallTime = 1000000/75; } _instance = _frontend.register_sensor(); _dev->get_semaphore()->give(); _dev->register_periodic_callback(CallTime, FUNCTOR_BIND_MEMBER(&AP_Baro_LPS2XH::_timer, void)); return true; } //check ID bool AP_Baro_LPS2XH::_check_whoami(void) { uint8_t whoami; if (! _dev->read_registers(REG_ID, &whoami, 1)) { return false; } hal.console->printf("LPS2XH whoami 0x%02x\n", whoami); switch(whoami){ case LPS22HB_WHOAMI: _lps2xh_type = BARO_LPS22H; return true; case LPS25HB_WHOAMI: _lps2xh_type = BARO_LPS25H; return true; } return false; } // acumulate a new sensor reading void AP_Baro_LPS2XH::_timer(void) { uint8_t status; // use status to check if data is available if (!_dev->read_registers(STATUS_ADDR, &status, 1)) { return; } if (status & 0x02) { _update_temperature(); } if (status & 0x01) { _update_pressure(); } _has_sample = true; } // transfer data to the frontend void AP_Baro_LPS2XH::update(void) { if (!_has_sample) { return; } WITH_SEMAPHORE(_sem); _copy_to_frontend(_instance, _pressure, _temperature); _has_sample = false; } // calculate temperature void AP_Baro_LPS2XH::_update_temperature(void) { uint8_t pu8[2]; if (!_dev->read_registers(TEMP_OUT_ADDR, pu8, 2)) { return; } int16_t Temp_Reg_s16 = (uint16_t)(pu8[1]<<8) | pu8[0]; WITH_SEMAPHORE(_sem); if (_lps2xh_type == BARO_LPS25H) { _temperature = (Temp_Reg_s16 * (1.0/480)) + 42.5; } if (_lps2xh_type == BARO_LPS22H) { _temperature = Temp_Reg_s16 * 0.01; } } // calculate pressure void AP_Baro_LPS2XH::_update_pressure(void) { uint8_t pressure[3]; if (!_dev->read_registers(PRESS_OUT_XL_ADDR, pressure, 3)) { return; } int32_t Pressure_Reg_s32 = ((uint32_t)pressure[2]<<16)|((uint32_t)pressure[1]<<8)|(uint32_t)pressure[0]; int32_t Pressure_mb = Pressure_Reg_s32 * (100.0f / 4096); // scale for pa WITH_SEMAPHORE(_sem); _pressure = Pressure_mb; }