/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_Baro_BMP388.h" #include extern const AP_HAL::HAL &hal; #define BMP388_MODE_SLEEP 0 #define BMP388_MODE_FORCED 1 #define BMP388_MODE_NORMAL 3 #define BMP388_MODE BMP388_MODE_NORMAL #define BMP388_ID 0x50 #define BMP388_REG_ID 0x00 #define BMP388_REG_ERR 0x02 #define BMP388_REG_STATUS 0x03 #define BMP388_REG_PRESS 0x04 // 24 bit #define BMP388_REG_TEMP 0x07 // 24 bit #define BMP388_REG_TIME 0x0C // 24 bit #define BMP388_REG_EVENT 0x10 #define BMP388_REG_INT_STS 0x11 #define BMP388_REG_FIFO_LEN 0x12 // 9 bit #define BMP388_REG_FIFO_DATA 0x14 #define BMP388_REG_FIFO_WTMK 0x15 // 9 bit #define BMP388_REG_FIFO_CNF1 0x17 #define BMP388_REG_FIFO_CNF2 0x18 #define BMP388_REG_INT_CTRL 0x19 #define BMP388_REG_PWR_CTRL 0x1B #define BMP388_REG_OSR 0x1C #define BMP388_REG_ODR 0x1D #define BMP388_REG_CONFIG 0x1F #define BMP388_REG_CMD 0x7E #define BMP388_REG_CAL_P 0x36 #define BMP388_REG_CAL_T 0x31 AP_Baro_BMP388::AP_Baro_BMP388(AP_Baro &baro, AP_HAL::OwnPtr _dev) : AP_Baro_Backend(baro) , dev(std::move(_dev)) { } AP_Baro_Backend *AP_Baro_BMP388::probe(AP_Baro &baro, AP_HAL::OwnPtr _dev) { if (!_dev) { return nullptr; } AP_Baro_BMP388 *sensor = new AP_Baro_BMP388(baro, std::move(_dev)); if (!sensor || !sensor->init()) { delete sensor; return nullptr; } return sensor; } bool AP_Baro_BMP388::init() { if (!dev) { return false; } WITH_SEMAPHORE(dev->get_semaphore()); has_sample = false; dev->set_speed(AP_HAL::Device::SPEED_HIGH); // setup to allow reads on SPI if (dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) { dev->set_read_flag(0x80); } // normal mode, temp and pressure dev->write_register(BMP388_REG_PWR_CTRL, 0x33, true); uint8_t whoami; if (!dev->read_registers(BMP388_REG_ID, &whoami, 1) || whoami != BMP388_ID) { // not a BMP388 return false; } // read the calibration data dev->read_registers(BMP388_REG_CAL_P, (uint8_t *)&calib_p, sizeof(calib_p)); dev->read_registers(BMP388_REG_CAL_T, (uint8_t *)&calib_t, sizeof(calib_t)); scale_calibration_data(); dev->setup_checked_registers(4); // normal mode, temp and pressure dev->write_register(BMP388_REG_PWR_CTRL, 0x33, true); instance = _frontend.register_sensor(); // request 50Hz update dev->register_periodic_callback(20 * AP_USEC_PER_MSEC, FUNCTOR_BIND_MEMBER(&AP_Baro_BMP388::timer, void)); return true; } // acumulate a new sensor reading void AP_Baro_BMP388::timer(void) { uint8_t buf[7]; if (!dev->read_registers(BMP388_REG_STATUS, buf, sizeof(buf))) { return; } const uint8_t status = buf[0]; if ((status & 0x20) != 0) { // we have pressure data update_pressure((buf[3] << 16) | (buf[2] << 8) | buf[1]); } if ((status & 0x40) != 0) { // we have temperature data update_temperature((buf[6] << 16) | (buf[5] << 8) | buf[4]); } dev->check_next_register(); } // transfer data to the frontend void AP_Baro_BMP388::update(void) { WITH_SEMAPHORE(_sem); if (!has_sample) { return; } _copy_to_frontend(instance, pressure, temperature); has_sample = false; } /* convert calibration data from NVM values to values ready for compensation calculations */ void AP_Baro_BMP388::scale_calibration_data(void) { // note that this assumes little-endian MCU calib.par_t1 = calib_t.nvm_par_t1 * 256.0; calib.par_t2 = calib_t.nvm_par_t2 / 1073741824.0f; calib.par_t3 = calib_t.nvm_par_t3 / 281474976710656.0f; calib.par_p1 = (calib_p.nvm_par_p1 - 16384) / 1048576.0f; calib.par_p2 = (calib_p.nvm_par_p2 - 16384) / 536870912.0f; calib.par_p3 = calib_p.nvm_par_p3 / 4294967296.0f; calib.par_p4 = calib_p.nvm_par_p4 / 137438953472.0; calib.par_p5 = calib_p.nvm_par_p5 * 8.0f; calib.par_p6 = calib_p.nvm_par_p6 / 64.0; calib.par_p7 = calib_p.nvm_par_p7 / 256.0f; calib.par_p8 = calib_p.nvm_par_p8 / 32768.0f; calib.par_p9 = calib_p.nvm_par_p9 / 281474976710656.0f; calib.par_p10 = calib_p.nvm_par_p10 / 281474976710656.0f; calib.par_p11 = calib_p.nvm_par_p11 / 36893488147419103232.0f; } /* update temperature from raw sample */ void AP_Baro_BMP388::update_temperature(uint32_t data) { float partial1 = data - calib.par_t1; float partial2 = partial1 * calib.par_t2; WITH_SEMAPHORE(_sem); temperature = partial2 + sq(partial1) * calib.par_t3; } /* update pressure from raw pressure data */ void AP_Baro_BMP388::update_pressure(uint32_t data) { float partial1 = calib.par_p6 * temperature; float partial2 = calib.par_p7 * powf(temperature, 2); float partial3 = calib.par_p8 * powf(temperature, 3); float partial_out1 = calib.par_p5 + partial1 + partial2 + partial3; partial1 = calib.par_p2 * temperature; partial2 = calib.par_p3 * powf(temperature, 2); partial3 = calib.par_p4 * powf(temperature, 3); float partial_out2 = data * (calib.par_p1 + partial1 + partial2 + partial3); partial1 = powf(data, 2); partial2 = calib.par_p9 + calib.par_p10 * temperature; partial3 = partial1 * partial2; float partial4 = partial3 + powf(data, 3) * calib.par_p11; float press = partial_out1 + partial_out2 + partial4; WITH_SEMAPHORE(_sem); pressure = press; has_sample = true; }