/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "AP_RangeFinder_LightWareI2C.h"
#include
#include
extern const AP_HAL::HAL& hal;
#define LIGHTWARE_DISTANCE_READ_REG 0
#define LIGHTWARE_LOST_SIGNAL_TIMEOUT_READ_REG 22
#define LIGHTWARE_LOST_SIGNAL_TIMEOUT_WRITE_REG 23
#define LIGHTWARE_TIMEOUT_REG_DESIRED_VALUE 5
static const size_t lx20_max_reply_len_bytes = 32;
static const size_t lx20_max_expected_stream_reply_len_bytes = 14;
#define stream_the_median_distance_to_the_first_return "ldf,0"
#define stream_the_raw_distance_to_the_first_return "ldf,1"
#define stream_the_signal_strength_first_return "lhf"
#define stream_the_raw_distance_to_the_last_return "ldl,1"
#define stream_the_signal_strength_last_return "lhl"
#define stream_the_level_of_background_noise "ln"
/* Data streams from the LiDAR can include any sf20 LiDAR measurement.
* A request to stream the desired measurement is made on a 20Hz basis and
* on the next 20Hz service 50ms later, the result is read and a streaming
* request is made for the next desired measurement in the sequence.
* Results are generally available from the LiDAR within 10mS of request.
*/
#define STREAM1_VAL stream_the_raw_distance_to_the_last_return
#define STREAM2_VAL stream_the_signal_strength_last_return
#define STREAM3_VAL stream_the_raw_distance_to_the_first_return
#define STREAM4_VAL stream_the_signal_strength_first_return
#define STREAM5_VAL stream_the_level_of_background_noise
static const char *parse_stream_id[NUM_SF20_DATA_STREAMS] = { // List of stream identifier strings. Must match init_stream_id[].
STREAM1_VAL ":"
};
static const char *init_stream_id[NUM_SF20_DATA_STREAMS] = {// List of stream initialization strings. Must match parse_stream_id[].
"$1" STREAM1_VAL "\r\n"
};
static const uint8_t streamSequence[] = { 0 }; // List of 0 based stream Ids that determine the LiDAR values collected.
static const uint8_t numStreamSequenceIndexes = sizeof(streamSequence)/sizeof(streamSequence[0]);
/*
The constructor also initializes the rangefinder. Note that this
constructor is not called until detect() returns true, so we
already know that we should setup the rangefinder
*/
AP_RangeFinder_LightWareI2C::AP_RangeFinder_LightWareI2C(RangeFinder::RangeFinder_State &_state,
AP_RangeFinder_Params &_params,
AP_HAL::OwnPtr dev)
: AP_RangeFinder_Backend(_state, _params)
, _dev(std::move(dev)) {}
/*
Detects if a Lightware rangefinder is connected. We'll detect by
trying to take a reading on I2C. If we get a result the sensor is
there.
*/
AP_RangeFinder_Backend *AP_RangeFinder_LightWareI2C::detect(RangeFinder::RangeFinder_State &_state,
AP_RangeFinder_Params &_params,
AP_HAL::OwnPtr dev)
{
if (!dev) {
return nullptr;
}
AP_RangeFinder_LightWareI2C *sensor
= new AP_RangeFinder_LightWareI2C(_state, _params, std::move(dev));
if (!sensor) {
return nullptr;
}
WITH_SEMAPHORE(sensor->_dev->get_semaphore());
if (!sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
/**
* Wrapper function over #transfer() to write a sequence of bytes to
* device. No values are read.
*/
bool AP_RangeFinder_LightWareI2C::write_bytes(uint8_t *write_buf_u8, uint32_t len_u8)
{
return _dev->transfer(write_buf_u8, len_u8, NULL, 0);
}
/**
* Disables "address tagging" in the sf20 response packets.
*/
void AP_RangeFinder_LightWareI2C::sf20_disable_address_tagging()
{
sf20_send_and_expect("#CT,0\r\n", "ct:0");
}
/*
send a native command and check for an expected reply
*/
bool AP_RangeFinder_LightWareI2C::sf20_send_and_expect(const char* send_msg, const char* expected_reply)
{
const size_t expected_reply_len = strlen(expected_reply);
uint8_t rx_bytes[expected_reply_len + 1];
memset(rx_bytes, 0, sizeof(rx_bytes));
if ((expected_reply_len > lx20_max_reply_len_bytes) ||
(expected_reply_len < 2)) {
return false;
}
if (!write_bytes((uint8_t*)send_msg,
strlen(send_msg))) {
return false;
}
if (!sf20_wait_on_reply(rx_bytes)) {
return false;
}
if ((rx_bytes[0] != expected_reply[0]) ||
(rx_bytes[1] != expected_reply[1]) ) {
return false;
}
for (uint8_t i=0; i<10; i++) {
if (_dev->read(rx_bytes, expected_reply_len)) {
break;
}
// give a bit of time for the remaining bytes to be available
hal.scheduler->delay(1);
}
return memcmp(rx_bytes, expected_reply, expected_reply_len) == 0;
}
/*
send a native command and fill a reply into a buffer. Used for
version string
*/
void AP_RangeFinder_LightWareI2C::sf20_get_version(const char* send_msg, const char *reply_prefix, char reply[15])
{
const size_t expected_reply_len = 16;
uint8_t rx_bytes[expected_reply_len + 1];
memset(rx_bytes, 0, sizeof(rx_bytes));
if (!write_bytes((uint8_t*)send_msg, strlen(send_msg))) {
return;
}
if (!sf20_wait_on_reply(rx_bytes)) {
return;
}
if ((rx_bytes[0] != uint8_t(reply_prefix[0])) ||
(rx_bytes[1] != uint8_t(reply_prefix[1])) ) {
return;
}
for (uint8_t i=0; i<10; i++) {
if (_dev->read(rx_bytes, expected_reply_len)) {
break;
}
// give a bit of time for the remaining bytes to be available
hal.scheduler->delay(1);
}
memcpy(reply, &rx_bytes[2], 14);
}
/* Driver first attempts to initialize the sf20.
* If for any reason this fails, the driver attempts to initialize the legacy LightWare LiDAR.
* If this fails, the driver returns false indicating no LightWare LiDAR is present.
*/
bool AP_RangeFinder_LightWareI2C::init()
{
if (sf20_init()) {
hal.console->printf("Found SF20 native Lidar\n");
return true;
}
if (legacy_init()) {
hal.console->printf("Found SF20 legacy Lidar\n");
return true;
}
hal.console->printf("SF20 not found\n");
return false;
}
/*
initialise lidar using legacy 16 bit protocol
*/
bool AP_RangeFinder_LightWareI2C::legacy_init()
{
union {
be16_t be16_val;
uint8_t bytes[2];
} timeout;
// Retrieve lost signal timeout register
const uint8_t read_reg = LIGHTWARE_LOST_SIGNAL_TIMEOUT_READ_REG;
if (!_dev->transfer(&read_reg, 1, timeout.bytes, 2)) {
return false;
}
// Check lost signal timeout register against desired value and write it if it does not match
if (be16toh(timeout.be16_val) != LIGHTWARE_TIMEOUT_REG_DESIRED_VALUE) {
timeout.be16_val = htobe16(LIGHTWARE_TIMEOUT_REG_DESIRED_VALUE);
const uint8_t send_buf[3] = {LIGHTWARE_LOST_SIGNAL_TIMEOUT_WRITE_REG, timeout.bytes[0], timeout.bytes[1]};
if (!_dev->transfer(send_buf, sizeof(send_buf), nullptr, 0)) {
return false;
}
}
// call timer() at 20Hz
_dev->register_periodic_callback(50000,
FUNCTOR_BIND_MEMBER(&AP_RangeFinder_LightWareI2C::legacy_timer, void));
return true;
}
/*
initialise using newer text based protocol
*/
bool AP_RangeFinder_LightWareI2C::sf20_init()
{
// version strings for reporting
char version[15] {};
sf20_get_version("?P\r\n", "p:", version);
if (version[0]) {
hal.console->printf("SF20 Lidar version %s\n", version);
}
// Makes sure that "address tagging" is turned off.
// Address tagging starts every response with "0x66".
// Turns off Address Tagging just in case it was previously left on in the non-volatile configuration.
sf20_disable_address_tagging();
// Disconnect the servo (if applicable)
sf20_send_and_expect("#SC,0\r\n", "sc:0");
// Change the power consumption:
// 0 = power off
// 1 = power on
// As of 7/10/17 sw and fw version 1.0 the "#E,1" command does not seem to be supported.
// When it is supported the expected response would be "e:1".
// Changes the number of lost signal confirmations: 1 [1..250].
if (!sf20_send_and_expect("#LC,1\r\n", "lc:1")) {
return false;
}
#if 0
// This location in the code may be uncommented to do a one time change of the devices address.
// It should be commented out again and immediately reloaded to the pixhawk after the device has
// been modified by this initialization process.
// Address change to 0x65 = 101
write_bytes((uint8_t*)"#CI,0x65\r\n",10);
_dev->set_address(0x65);
uint8_t rx_bytes[lx20_max_reply_len_bytes + 1];
sf20_wait_on_reply(rx_bytes);
// Save the comm settings
if (!sf20_send_and_expect("%C\r\n", "%c:")) {
return false;
}
#endif
#if 0
/*
this can be used to change the laser encoding pattern
Changes the laser encoding pattern: 3 (Random A) [0..4].
*/
if (!sf20_send_and_expect("#LE,3\r\n", "le:3")) {
return false;
}
#endif
// Sets datum offset [-10.00 ... 10.00].
if (!sf20_send_and_expect("#LO,0.00\r\n", "lo:0.00")) {
return false;
}
// Changes to a new measuring mode (update rate):
// 1 = 388 readings per second
// 2 = 194 readings per second
// 3 = 129 readings per second
// 4 = 97 readings per second
// 5 = 78 readings per second
// 6 = 65 readings per second
// 7 = 55 readings per second
// 8 = 48 readings per second
if (!sf20_send_and_expect("#LM,7\r\n", "lm:7")) {
return false;
}
// Changes the gain boost value:
// Adjustment range = -20.00 ... 5.00
if (!sf20_send_and_expect("#LB,0.00\r\n", "lb:0.00")) {
return false;
}
// Switches distance streaming on or off:
// 0 = off
// 1 = on
if (!sf20_send_and_expect("#SU,1\r\n", "su:1")) {
return false;
}
// Changes the laser state:
// 0 = laser is off
// 1 = laser is running
if (!sf20_send_and_expect("#LF,1\r\n", "lf:1")) {
return false;
}
// Requests the measurement specified in the first stream.
write_bytes((uint8_t*)init_stream_id[0], strlen(init_stream_id[0]));
// call timer() at 20Hz
_dev->register_periodic_callback(50000,
FUNCTOR_BIND_MEMBER(&AP_RangeFinder_LightWareI2C::sf20_timer, void));
return true;
}
// read - return last value measured by sensor
bool AP_RangeFinder_LightWareI2C::legacy_get_reading(uint16_t &reading_cm)
{
be16_t val;
const uint8_t read_reg = LIGHTWARE_DISTANCE_READ_REG;
// read the high and low byte distance registers
if (_dev->transfer(&read_reg, 1, (uint8_t *)&val, sizeof(val))) {
// combine results into distance
reading_cm = be16toh(val);
return true;
}
return false;
}
// read - return last value measured by sf20 sensor
bool AP_RangeFinder_LightWareI2C::sf20_get_reading(uint16_t &reading_cm)
{
// Parses up to 5 ASCII streams for LiDAR data.
// If a parse fails, the stream measurement is not updated until it is successfully read in the future.
uint8_t stream[lx20_max_expected_stream_reply_len_bytes+1]; // Maximum response length for a stream ie "ldf,0:40.99" is 11 characters
uint8_t i = streamSequence[currentStreamSequenceIndex];
size_t num_processed_chars = 0;
/* Reads the LiDAR value requested during the last interrupt. */
if (!_dev->read(stream, sizeof(stream))) {
return false;
}
stream[lx20_max_expected_stream_reply_len_bytes] = 0;
if (!sf20_parse_stream(stream, &num_processed_chars, parse_stream_id[i], sf20_stream_val[i])) {
return false;
}
if (i==0) {
reading_cm = sf20_stream_val[0];
}
// Increment the stream sequence
currentStreamSequenceIndex++;
if (currentStreamSequenceIndex >= numStreamSequenceIndexes) {
currentStreamSequenceIndex = 0;
}
i = streamSequence[currentStreamSequenceIndex];
// Request the next stream in the sequence from the SF20
write_bytes((uint8_t*)init_stream_id[i], strlen(init_stream_id[i]));
return true;
}
bool AP_RangeFinder_LightWareI2C::sf20_parse_stream(uint8_t *stream_buf,
size_t *p_num_processed_chars,
const char *string_identifier,
uint16_t &val)
{
size_t string_identifier_len = strlen(string_identifier);
for (uint32_t i = 0 ; i < string_identifier_len ; i++) {
if (stream_buf[*p_num_processed_chars] != string_identifier[i]) {
return false;
}
(*p_num_processed_chars)++;
}
/* Number is always returned in hundredths. So 6.33 is returned as 633. 6.3 is returned as 630.
* 6 is returned as 600.
* Extract number in format 6.33 or 123.99 (meters to be converted to centimeters).
* Percentages such as 100 (percent), are returned as 10000.
*/
uint32_t final_multiplier = 100;
bool decrement_multiplier = false;
bool number_found = false;
uint16_t accumulator = 0;
uint16_t digit_u16 = (uint16_t)stream_buf[*p_num_processed_chars];
while ((((digit_u16 <= '9') &&
(digit_u16 >= '0')) ||
(digit_u16 == '.')) &&
(*p_num_processed_chars < lx20_max_reply_len_bytes)) {
(*p_num_processed_chars)++;
if (decrement_multiplier) {
final_multiplier /=10;
}
if (digit_u16 == '.') {
decrement_multiplier = true;
digit_u16 = (uint16_t)stream_buf[*p_num_processed_chars];
continue;
}
number_found = true;
accumulator *= 10;
accumulator += digit_u16 - '0';
digit_u16 = (uint16_t)stream_buf[*p_num_processed_chars];
}
accumulator *= final_multiplier;
val = accumulator;
return number_found;
}
/*
update the state of the sensor
*/
void AP_RangeFinder_LightWareI2C::update(void)
{
// nothing to do - its all done in the timer()
}
void AP_RangeFinder_LightWareI2C::legacy_timer(void)
{
if (legacy_get_reading(state.distance_cm)) {
// update range_valid state based on distance measured
update_status();
} else {
set_status(RangeFinder::RangeFinder_NoData);
}
}
void AP_RangeFinder_LightWareI2C::sf20_timer(void)
{
if (sf20_get_reading(state.distance_cm)) {
// update range_valid state based on distance measured
update_status();
} else {
set_status(RangeFinder::RangeFinder_NoData);
}
}
// Only for use during init as this blocks while waiting for the SF20 to be ready.
bool AP_RangeFinder_LightWareI2C::sf20_wait_on_reply(uint8_t *rx_two_byte)
{
// Waits for a non-zero first byte while repeatedly reading 16 bits.
// This is used after a read command to allow the sf20 time to provide the result.
uint32_t start_time_ms = AP_HAL::millis();
const uint32_t max_wait_time_ms = 50;
while (AP_HAL::millis() - start_time_ms < max_wait_time_ms) {
if (!_dev->read(rx_two_byte, 2)) {
hal.scheduler->delay(1);
continue;
}
if (rx_two_byte[0] != 0) {
// normal exit
return true;
}
}
return false;
}