/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * AP_OSD partially based on betaflight and inav osd.c implemention. * clarity.mcm font is taken from inav configurator. * Many thanks to their authors. */ /* parameter settings for one screen */ #include "AP_OSD.h" #include "AP_OSD_Backend.h" #include #include #include #include #include #include #include #include #include #include #include #include #include const AP_Param::GroupInfo AP_OSD_Screen::var_info[] = { // @Param: ENABLE // @DisplayName: Enable screen // @Description: Enable this screen // @Values: 0:Disabled,1:Enabled // @User: Standard AP_GROUPINFO_FLAGS("ENABLE", 1, AP_OSD_Screen, enabled, 0, AP_PARAM_FLAG_ENABLE), // @Param: CHAN_MIN // @DisplayName: Transmitter switch screen minimum pwm // @Description: This sets the PWM lower limit for this screen // @Range: 900 2100 // @User: Standard AP_GROUPINFO("CHAN_MIN", 2, AP_OSD_Screen, channel_min, 900), // @Param: CHAN_MAX // @DisplayName: Transmitter switch screen maximum pwm // @Description: This sets the PWM upper limit for this screen // @Range: 900 2100 // @User: Standard AP_GROUPINFO("CHAN_MAX", 3, AP_OSD_Screen, channel_max, 2100), // @Param: ALTITUDE_EN // @DisplayName: ALTITUDE_EN // @Description: Enables display of altitude AGL // @Values: 0:Disabled,1:Enabled // @Param: ALTITUDE_X // @DisplayName: ALTITUDE_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: ALTITUDE_Y // @DisplayName: ALTITUDE_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(altitude, "ALTITUDE", 4, AP_OSD_Screen, AP_OSD_Setting), // @Param: BATVOLT_EN // @DisplayName: BATVOLT_EN // @Description: Displays main battery voltage // @Values: 0:Disabled,1:Enabled // @Param: BATVOLT_X // @DisplayName: BATVOLT_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: BATVOLT_Y // @DisplayName: BATVOLT_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(bat_volt, "BAT_VOLT", 5, AP_OSD_Screen, AP_OSD_Setting), // @Param: RSSI_EN // @DisplayName: RSSI_EN // @Description: Displays RC signal strength // @Values: 0:Disabled,1:Enabled // @Param: RSSI_X // @DisplayName: RSSI_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: RSSI_Y // @DisplayName: RSSI_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(rssi, "RSSI", 6, AP_OSD_Screen, AP_OSD_Setting), // @Param: CURRENT_EN // @DisplayName: CURRENT_EN // @Description: Displays main battery current // @Values: 0:Disabled,1:Enabled // @Param: CURRENT_X // @DisplayName: CURRENT_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: CURRENT_Y // @DisplayName: CURRENT_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(current, "CURRENT", 7, AP_OSD_Screen, AP_OSD_Setting), // @Param: BATUSED_EN // @DisplayName: BATUSED_EN // @Description: Displays primary battery mAh consumed // @Values: 0:Disabled,1:Enabled // @Param: BATUSED_X // @DisplayName: BATUSED_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: BATUSED_Y // @DisplayName: BATUSED_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(batused, "BATUSED", 8, AP_OSD_Screen, AP_OSD_Setting), // @Param: SATS_EN // @DisplayName: SATS_EN // @Description: Displays number of acquired sattelites // @Values: 0:Disabled,1:Enabled // @Param: SATS_X // @DisplayName: SATS_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: SATS_Y // @DisplayName: SATS_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(sats, "SATS", 9, AP_OSD_Screen, AP_OSD_Setting), // @Param: FLTMODE_EN // @DisplayName: FLTMODE_EN // @Description: Displays flight mode // @Values: 0:Disabled,1:Enabled // @Param: FLTMODE_X // @DisplayName: FLTMODE_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: FLTMODE_Y // @DisplayName: FLTMODE_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(fltmode, "FLTMODE", 10, AP_OSD_Screen, AP_OSD_Setting), // @Param: MESSAGE_EN // @DisplayName: MESSAGE_EN // @Description: Displays Mavlink messages // @Values: 0:Disabled,1:Enabled // @Param: MESSAGE_X // @DisplayName: MESSAGE_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: MESSAGE_Y // @DisplayName: MESSAGE_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(message, "MESSAGE", 11, AP_OSD_Screen, AP_OSD_Setting), // @Param: GSPEED_EN // @DisplayName: GSPEED_EN // @Description: Displays GPS ground speed // @Values: 0:Disabled,1:Enabled // @Param: GSPEED_X // @DisplayName: GSPEED_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: GSPEED_Y // @DisplayName: GSPEED_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(gspeed, "GSPEED", 12, AP_OSD_Screen, AP_OSD_Setting), // @Param: HORIZON_EN // @DisplayName: HORIZON_EN // @Description: Displays artificial horizon // @Values: 0:Disabled,1:Enabled // @Param: HORIZON_X // @DisplayName: HORIZON_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: HORIZON_Y // @DisplayName: HORIZON_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(horizon, "HORIZON", 13, AP_OSD_Screen, AP_OSD_Setting), // @Param: HOME_EN // @DisplayName: HOME_EN // @Description: Displays distance and relative direction to HOME // @Values: 0:Disabled,1:Enabled // @Param: HOME_X // @DisplayName: HOME_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: HOME_Y // @DisplayName: HOME_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(home, "HOME", 14, AP_OSD_Screen, AP_OSD_Setting), // @Param: HEADING_EN // @DisplayName: HEADING_EN // @Description: Displays heading // @Values: 0:Disabled,1:Enabled // @Param: HEADING_X // @DisplayName: HEADING_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: HEADING_Y // @DisplayName: HEADING_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(heading, "HEADING", 15, AP_OSD_Screen, AP_OSD_Setting), // @Param: THROTTLE_EN // @DisplayName: THROTTLE_EN // @Description: Displays actual throttle percentage being sent to motor(s) // @Values: 0:Disabled,1:Enabled // @Param: THROTTLE_X // @DisplayName: THROTTLE_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: THROTTLE_Y // @DisplayName: THROTTLE_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(throttle, "THROTTLE", 16, AP_OSD_Screen, AP_OSD_Setting), // @Param: COMPASS_EN // @DisplayName: COMPASS_EN // @Description: Enables display of compass rose // @Values: 0:Disabled,1:Enabled // @Param: COMPASS_X // @DisplayName: COMPASS_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: COMPASS_Y // @DisplayName: COMPASS_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(compass, "COMPASS", 17, AP_OSD_Screen, AP_OSD_Setting), // @Param: WIND_EN // @DisplayName: WIND_EN // @Description: Displays wind speed and relative direction // @Values: 0:Disabled,1:Enabled // @Param: WIND_X // @DisplayName: WIND_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: WIND_Y // @DisplayName: WIND_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(wind, "WIND", 18, AP_OSD_Screen, AP_OSD_Setting), // @Param: ASPEED_EN // @DisplayName: ASPEED_EN // @Description: Displays airspeed value being used by TECS (fused value) // @Values: 0:Disabled,1:Enabled // @Param: ASPEED_X // @DisplayName: ASPEED_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: ASPEED_Y // @DisplayName: ASPEED_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(aspeed, "ASPEED", 19, AP_OSD_Screen, AP_OSD_Setting), // @Param: VSPEED_EN // @DisplayName: VSPEED_EN // @Description: Displays climb rate // @Values: 0:Disabled,1:Enabled // @Param: VSPEED_X // @DisplayName: VSPEED_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: VSPEED_Y // @DisplayName: VSPEED_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(vspeed, "VSPEED", 20, AP_OSD_Screen, AP_OSD_Setting), #ifdef HAVE_AP_BLHELI_SUPPORT // @Param: BLHTEMP_EN // @DisplayName: BLHTEMP_EN // @Description: Displays first esc's temp // @Values: 0:Disabled,1:Enabled // @Param: BLHTEMP_X // @DisplayName: BLHTEMP_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: BLHTEMP_Y // @DisplayName: BLHTEMP_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(blh_temp, "BLHTEMP", 21, AP_OSD_Screen, AP_OSD_Setting), // @Param: BLHRPM_EN // @DisplayName: BLHRPM_EN // @Description: Displays first esc's rpm // @Values: 0:Disabled,1:Enabled // @Param: BLHRPM_X // @DisplayName: BLHRPM_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: BLHRPM_Y // @DisplayName: BLHRPM_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(blh_rpm, "BLHRPM", 22, AP_OSD_Screen, AP_OSD_Setting), // @Param: BLHAMPS_EN // @DisplayName: BLHAMPS_EN // @Description: Displays first esc's current // @Values: 0:Disabled,1:Enabled // @Param: BLHAMPS_X // @DisplayName: BLHAMPS_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: BLHAMPS_Y // @DisplayName: BLHAMPS_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(blh_amps, "BLHAMPS", 23, AP_OSD_Screen, AP_OSD_Setting), #endif // @Param: GPSLAT_EN // @DisplayName: GPSLAT_EN // @Description: Displays GPS latitude // @Values: 0:Disabled,1:Enabled // @Param: GPSLAT_X // @DisplayName: GPSLAT_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: GPSLAT_Y // @DisplayName: GPSLAT_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(gps_latitude, "GPSLAT", 24, AP_OSD_Screen, AP_OSD_Setting), // @Param: GPSLONG_EN // @DisplayName: GPSLONG_EN // @Description: Displays GPS longitude // @Values: 0:Disabled,1:Enabled // @Param: GPSLONG_X // @DisplayName: GPSLONG_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: GPSLONG_Y // @DisplayName: GPSLONG_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(gps_longitude, "GPSLONG", 25, AP_OSD_Screen, AP_OSD_Setting), // @Param: ROLL_EN // @DisplayName: ROLL_EN // @Description: Displays degrees of roll from level // @Values: 0:Disabled,1:Enabled // @Param: ROLL_X // @DisplayName: ROLL_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: ROLL_Y // @DisplayName: ROLL_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(roll_angle, "ROLL", 26, AP_OSD_Screen, AP_OSD_Setting), // @Param: PITCH_EN // @DisplayName: PITCH_EN // @Description: Displays degrees of pitch from level // @Values: 0:Disabled,1:Enabled // @Param: PITCH_X // @DisplayName: PITCH_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: PITCH_Y // @DisplayName: PITCH_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(pitch_angle, "PITCH", 27, AP_OSD_Screen, AP_OSD_Setting), // @Param: TEMP_EN // @DisplayName: TEMP_EN // @Description: Displays temperature reported by primary barometer // @Values: 0:Disabled,1:Enabled // @Param: TEMP_X // @DisplayName: TEMP_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: TEMP_Y // @DisplayName: TEMP_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(temp, "TEMP", 28, AP_OSD_Screen, AP_OSD_Setting), // @Param: HDOP_EN // @DisplayName: HDOP_EN // @Description: Displays Horizontal Dilution Of Position // @Values: 0:Disabled,1:Enabled // @Param: HDOP_X // @DisplayName: HDOP_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: HDOP_Y // @DisplayName: HDOP_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(hdop, "HDOP", 29, AP_OSD_Screen, AP_OSD_Setting), // @Param: WAYPOINT_EN // @DisplayName: WAYPOINT_EN // @Description: Displays bearing and distance to next waypoint // @Values: 0:Disabled,1:Enabled // @Param: WAYPOINT_X // @DisplayName: WAYPOINT_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: WAYPOINT_Y // @DisplayName: WAYPOINT_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(waypoint, "WAYPOINT", 30, AP_OSD_Screen, AP_OSD_Setting), // @Param: XTRACK_EN // @DisplayName: XTRACK_EN // @Description: Displays crosstrack error // @Values: 0:Disabled,1:Enabled // @Param: XTRACK_X // @DisplayName: XTRACK_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: XTRACK_Y // @DisplayName: XTRACK_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(xtrack_error, "XTRACK", 31, AP_OSD_Screen, AP_OSD_Setting), // @Param: DIST_EN // @DisplayName: DIST_EN // @Description: Displays total distance flown // @Values: 0:Disabled,1:Enabled // @Param: DIST_X // @DisplayName: DIST_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: DIST_Y // @DisplayName: DIST_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(dist, "DIST", 32, AP_OSD_Screen, AP_OSD_Setting), // @Param: STATS_EN // @DisplayName: STATS_EN // @Description: Displays flight stats // @Values: 0:Disabled,1:Enabled // @Param: STATS_X // @DisplayName: STATS_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: STATS_Y // @DisplayName: STATS_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(stat, "STATS", 33, AP_OSD_Screen, AP_OSD_Setting), // @Param: FLTIME_EN // @DisplayName: FLTIME_EN // @Description: Displays total flight time // @Values: 0:Disabled,1:Enabled // @Param: FLTIME_X // @DisplayName: FLTIME_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: FLTIME_Y // @DisplayName: FLTIME_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(flightime, "FLTIME", 34, AP_OSD_Screen, AP_OSD_Setting), // @Param: CLIMBEFF_EN // @DisplayName: CLIMBEFF_EN // @Description: Displays climb efficiency (climb rate/current) // @Values: 0:Disabled,1:Enabled // @Param: CLIMBEFF_X // @DisplayName: CLIMBEFF_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: CLIMBEFF_Y // @DisplayName: CLIMBEFF_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(climbeff, "CLIMBEFF", 35, AP_OSD_Screen, AP_OSD_Setting), // @Param: EFF_EN // @DisplayName: EFF_EN // @Description: Displays flight efficiency (mAh/km or /mi) // @Values: 0:Disabled,1:Enabled // @Param: EFF_X // @DisplayName: EFF_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: EFF_Y // @DisplayName: EFF_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(eff, "EFF", 36, AP_OSD_Screen, AP_OSD_Setting), // @Param: BTEMP_EN // @DisplayName: BTEMP_EN // @Description: Displays temperature reported by secondary barometer // @Values: 0:Disabled,1:Enabled // @Param: BTEMP_X // @DisplayName: BTEMP_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: BTEMP_Y // @DisplayName: BTEMP_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(btemp, "BTEMP", 37, AP_OSD_Screen, AP_OSD_Setting), // @Param: ATEMP_EN // @DisplayName: ATEMP_EN // @Description: Displays temperature reported by primary airspeed sensor // @Values: 0:Disabled,1:Enabled // @Param: ATEMP_X // @DisplayName: ATEMP_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: ATEMP_Y // @DisplayName: ATEMP_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(atemp, "ATEMP", 38, AP_OSD_Screen, AP_OSD_Setting), // @Param: BAT2VLT_EN // @DisplayName: BAT2VLT_EN // @Description: Displays battery2 voltage // @Values: 0:Disabled,1:Enabled // @Param: BAT2VLT_X // @DisplayName: BAT2VLT_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: BAT2VLT_Y // @DisplayName: BAT2VLT_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(bat2_vlt, "BAT2_VLT", 39, AP_OSD_Screen, AP_OSD_Setting), // @Param: BAT2USED_EN // @DisplayName: BAT2USED_EN // @Description: Displays secondary battery mAh consumed // @Values: 0:Disabled,1:Enabled // @Param: BAT2USED_X // @DisplayName: BAT2USED_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: BAT2USED_Y // @DisplayName: BAT2USED_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(bat2used, "BAT2USED", 40, AP_OSD_Screen, AP_OSD_Setting), // @Param: ASPD2_EN // @DisplayName: ASPD2_EN // @Description: Displays airspeed reported directly from secondary airspeed sensor // @Values: 0:Disabled,1:Enabled // @Param: ASPD2_X // @DisplayName: ASPD2_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: ASPD2_Y // @DisplayName: ASPD2_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(aspd2, "ASPD2", 41, AP_OSD_Screen, AP_OSD_Setting), // @Param: ASPD1_EN // @DisplayName: ASPD1_EN // @Description: Displays airspeed reported directly from primary airspeed sensor // @Values: 0:Disabled,1:Enabled // @Param: ASPD1_X // @DisplayName: ASPD1_X // @Description: Horizontal position on screen // @Range: 0 29 // @Param: ASPD1_Y // @DisplayName: ASPD1_Y // @Description: Vertical position on screen // @Range: 0 15 AP_SUBGROUPINFO(aspd1, "ASPD1", 42, AP_OSD_Screen, AP_OSD_Setting), AP_GROUPEND }; // constructor AP_OSD_Screen::AP_OSD_Screen() { } //Symbols #define SYM_M 0xB9 #define SYM_KM 0xBA #define SYM_FT 0x0F #define SYM_MI 0xBB #define SYM_ALT_M 0xB1 #define SYM_ALT_FT 0xB3 #define SYM_BATT_FULL 0x90 #define SYM_RSSI 0x01 #define SYM_VOLT 0x06 #define SYM_AMP 0x9A #define SYM_MAH 0x07 #define SYM_MS 0x9F #define SYM_FS 0x99 #define SYM_KMH 0xA1 #define SYM_MPH 0xB0 #define SYM_DEGR 0xA8 #define SYM_PCNT 0x25 #define SYM_RPM 0xE0 #define SYM_ASPD 0xE1 #define SYM_GSPD 0xE2 #define SYM_WSPD 0xE3 #define SYM_VSPD 0xE4 #define SYM_WPNO 0xE5 #define SYM_WPDIR 0xE6 #define SYM_WPDST 0xE7 #define SYM_FTMIN 0xE8 #define SYM_FTSEC 0x99 #define SYM_SAT_L 0x1E #define SYM_SAT_R 0x1F #define SYM_HDOP_L 0xBD #define SYM_HDOP_R 0xBE #define SYM_HOME 0xBF #define SYM_WIND 0x16 #define SYM_ARROW_START 0x60 #define SYM_ARROW_COUNT 16 #define SYM_AH_H_START 0x80 #define SYM_AH_H_COUNT 9 #define SYM_AH_V_START 0xCA #define SYM_AH_V_COUNT 6 #define SYM_AH_CENTER_LINE_LEFT 0x26 #define SYM_AH_CENTER_LINE_RIGHT 0x27 #define SYM_AH_CENTER 0x7E #define SYM_HEADING_N 0x18 #define SYM_HEADING_S 0x19 #define SYM_HEADING_E 0x1A #define SYM_HEADING_W 0x1B #define SYM_HEADING_DIVIDED_LINE 0x1C #define SYM_HEADING_LINE 0x1D #define SYM_UP_UP 0xA2 #define SYM_UP 0xA3 #define SYM_DOWN 0xA4 #define SYM_DOWN_DOWN 0xA5 #define SYM_DEGREES_C 0x0E #define SYM_DEGREES_F 0x0D #define SYM_GPS_LAT 0xA6 #define SYM_GPS_LONG 0xA7 #define SYM_ARMED 0x00 #define SYM_DISARMED 0xE9 #define SYM_ROLL0 0x2D #define SYM_ROLLR 0xEA #define SYM_ROLLL 0xEB #define SYM_PTCH0 0x7C #define SYM_PTCHUP 0xEC #define SYM_PTCHDWN 0xED #define SYM_XERR 0xEE #define SYM_KN 0xF0 #define SYM_NM 0xF1 #define SYM_DIST 0x22 #define SYM_FLY 0x9C #define SYM_EFF 0xF2 #define SYM_AH 0xF3 void AP_OSD_Screen::set_backend(AP_OSD_Backend *_backend) { backend = _backend; osd = _backend->get_osd(); }; bool AP_OSD_Screen::check_option(uint32_t option) { return (osd->options & option) != 0; } /* get the right units icon given a unit */ char AP_OSD_Screen::u_icon(enum unit_type unit) { static const char icons_metric[UNIT_TYPE_LAST] { (char)SYM_ALT_M, //ALTITUDE (char)SYM_KMH, //SPEED (char)SYM_MS, //VSPEED (char)SYM_M, //DISTANCE (char)SYM_KM, //DISTANCE_LONG (char)SYM_DEGREES_C //TEMPERATURE }; static const char icons_imperial[UNIT_TYPE_LAST] { (char)SYM_ALT_FT, //ALTITUDE (char)SYM_MPH, //SPEED (char)SYM_FS, //VSPEED (char)SYM_FT, //DISTANCE (char)SYM_MI, //DISTANCE_LONG (char)SYM_DEGREES_F //TEMPERATURE }; static const char icons_SI[UNIT_TYPE_LAST] { (char)SYM_ALT_M, //ALTITUDE (char)SYM_MS, //SPEED (char)SYM_MS, //VSPEED (char)SYM_M, //DISTANCE (char)SYM_KM, //DISTANCE_LONG (char)SYM_DEGREES_C //TEMPERATURE }; static const char icons_aviation[UNIT_TYPE_LAST] { (char)SYM_ALT_FT, //ALTITUDE Ft (char)SYM_KN, //SPEED Knots (char)SYM_FS, //VSPEED (char)SYM_FT, //DISTANCE (char)SYM_NM, //DISTANCE_LONG Nm (char)SYM_DEGREES_C //TEMPERATURE }; static const char *icons[AP_OSD::UNITS_LAST] = { icons_metric, icons_imperial, icons_SI, icons_aviation, }; return icons[constrain_int16(osd->units, 0, AP_OSD::UNITS_LAST-1)][unit]; } /* scale a value for the user selected units */ float AP_OSD_Screen::u_scale(enum unit_type unit, float value) { static const float scale_metric[UNIT_TYPE_LAST] = { 1.0, //ALTITUDE m 3.6, //SPEED km/hr 1.0, //VSPEED m/s 1.0, //DISTANCE m 1.0/1000, //DISTANCE_LONG km 1.0, //TEMPERATURE C }; static const float scale_imperial[UNIT_TYPE_LAST] = { 3.28084, //ALTITUDE ft 2.23694, //SPEED mph 3.28084, //VSPEED ft/s 3.28084, //DISTANCE ft 1.0/1609.34, //DISTANCE_LONG miles 1.8, //TEMPERATURE F }; static const float offset_imperial[UNIT_TYPE_LAST] = { 0.0, //ALTITUDE 0.0, //SPEED 0.0, //VSPEED 0.0, //DISTANCE 0.0, //DISTANCE_LONG 32.0, //TEMPERATURE F }; static const float scale_SI[UNIT_TYPE_LAST] = { 1.0, //ALTITUDE m 1.0, //SPEED m/s 1.0, //VSPEED m/s 1.0, //DISTANCE m 1.0/1000, //DISTANCE_LONG km 1.0, //TEMPERATURE C }; static const float scale_aviation[UNIT_TYPE_LAST] = { 3.28084, //ALTITUDE Ft 1.94384, //SPEED Knots 196.85, //VSPEED ft/min 3.28084, //DISTANCE ft 0.000539957, //DISTANCE_LONG Nm 1.0, //TEMPERATURE C }; static const float *scale[AP_OSD::UNITS_LAST] = { scale_metric, scale_imperial, scale_SI, scale_aviation }; static const float *offsets[AP_OSD::UNITS_LAST] = { nullptr, offset_imperial, nullptr, nullptr }; uint8_t units = constrain_int16(osd->units, 0, AP_OSD::UNITS_LAST-1); return value * scale[units][unit] + (offsets[units]?offsets[units][unit]:0); } void AP_OSD_Screen::draw_altitude(uint8_t x, uint8_t y) { float alt; AP_AHRS &ahrs = AP::ahrs(); WITH_SEMAPHORE(ahrs.get_semaphore()); ahrs.get_relative_position_D_home(alt); alt = -alt; backend->write(x, y, false, "%4d%c", (int)u_scale(ALTITUDE, alt), u_icon(ALTITUDE)); } void AP_OSD_Screen::draw_bat_volt(uint8_t x, uint8_t y) { AP_BattMonitor &battery = AP::battery(); uint8_t pct = battery.capacity_remaining_pct(); uint8_t p = (100 - pct) / 16.6; float v = battery.voltage(); backend->write(x,y, v < osd->warn_batvolt, "%c%2.1f%c", SYM_BATT_FULL + p, (double)v, SYM_VOLT); } void AP_OSD_Screen::draw_rssi(uint8_t x, uint8_t y) { AP_RSSI *ap_rssi = AP_RSSI::get_singleton(); if (ap_rssi) { int rssiv = ap_rssi->read_receiver_rssi_uint8(); rssiv = (rssiv * 99) / 255; backend->write(x, y, rssiv < osd->warn_rssi, "%c%2d", SYM_RSSI, rssiv); } } void AP_OSD_Screen::draw_current(uint8_t x, uint8_t y) { AP_BattMonitor &battery = AP::battery(); float amps; if (!battery.current_amps(amps)) { amps = 0; } if (amps < 10.0) { backend->write(x, y, false, "%2.2f%c", amps, SYM_AMP); } else { backend->write(x, y, false, "%2.1f%c", amps, SYM_AMP); } } void AP_OSD_Screen::draw_fltmode(uint8_t x, uint8_t y) { AP_Notify * notify = AP_Notify::get_singleton(); char arm; if (AP_Notify::flags.armed) { arm = SYM_ARMED; } else { arm = SYM_DISARMED; } if (notify) { backend->write(x, y, false, "%s%c", notify->get_flight_mode_str(), arm); } } void AP_OSD_Screen::draw_sats(uint8_t x, uint8_t y) { AP_GPS & gps = AP::gps(); uint8_t nsat = gps.num_sats(); bool flash = (nsat < osd->warn_nsat) || (gps.status() < AP_GPS::GPS_OK_FIX_3D); backend->write(x, y, flash, "%c%c%2u", SYM_SAT_L, SYM_SAT_R, nsat); } void AP_OSD_Screen::draw_batused(uint8_t instance, uint8_t x, uint8_t y) { float mah; if (!AP::battery().consumed_mah(mah, instance)) { mah = 0; } if (mah <= 9999) { backend->write(x,y, false, "%4d%c", (int)mah, SYM_MAH); } else { const float ah = mah * 1e-3f; backend->write(x,y, false, "%2.2f%c", (double)ah, SYM_AH); } } void AP_OSD_Screen::draw_batused(uint8_t x, uint8_t y) { draw_batused(0, x, y); } //Autoscroll message is the same as in minimosd-extra. //Thanks to night-ghost for the approach. void AP_OSD_Screen::draw_message(uint8_t x, uint8_t y) { AP_Notify * notify = AP_Notify::get_singleton(); if (notify) { int32_t visible_time = AP_HAL::millis() - notify->get_text_updated_millis(); if (visible_time < osd->msgtime_s *1000) { char buffer[NOTIFY_TEXT_BUFFER_SIZE]; strncpy(buffer, notify->get_text(), sizeof(buffer)); int16_t len = strnlen(buffer, sizeof(buffer)); for (int16_t i=0; i message_visible_width) { int16_t chars_to_scroll = len - message_visible_width; int16_t total_cycles = 2*message_scroll_delay + 2*chars_to_scroll; int16_t current_cycle = (visible_time / message_scroll_time_ms) % total_cycles; //calculate scroll start_position if (current_cycle < total_cycles/2) { //move to the left start_position = current_cycle - message_scroll_delay; } else { //move to the right start_position = total_cycles - current_cycle; } start_position = constrain_int16(start_position, 0, chars_to_scroll); int16_t end_position = start_position + message_visible_width; //ensure array boundaries start_position = MIN(start_position, int(sizeof(buffer)-1)); end_position = MIN(end_position, int(sizeof(buffer)-1)); //trim invisible part buffer[end_position] = 0; } backend->write(x, y, buffer + start_position); } } } void AP_OSD_Screen::draw_speed_vector(uint8_t x, uint8_t y,Vector2f v, int32_t yaw) { float v_length = v.length(); char arrow = SYM_ARROW_START; if (v_length > 1.0f) { int32_t angle = wrap_360_cd(DEGX100 * atan2f(v.y, v.x) - yaw); int32_t interval = 36000 / SYM_ARROW_COUNT; arrow = SYM_ARROW_START + ((angle + interval / 2) / interval) % SYM_ARROW_COUNT; } if (u_scale(SPEED, v_length) < 10.0) { backend->write(x, y, false, "%c%3.1f%c", arrow, u_scale(SPEED, v_length), u_icon(SPEED)); } else { backend->write(x, y, false, "%c%3d%c", arrow, (int)u_scale(SPEED, v_length), u_icon(SPEED)); } } void AP_OSD_Screen::draw_gspeed(uint8_t x, uint8_t y) { AP_AHRS &ahrs = AP::ahrs(); WITH_SEMAPHORE(ahrs.get_semaphore()); Vector2f v = ahrs.groundspeed_vector(); backend->write(x, y, false, "%c", SYM_GSPD); draw_speed_vector(x + 1, y, v, ahrs.yaw_sensor); } //Thanks to betaflight/inav for simple and clean artificial horizon visual design void AP_OSD_Screen::draw_horizon(uint8_t x, uint8_t y) { AP_AHRS &ahrs = AP::ahrs(); WITH_SEMAPHORE(ahrs.get_semaphore()); float roll = ahrs.roll; float pitch = -ahrs.pitch; //inverted roll AH if (check_option(AP_OSD::OPTION_INVERTED_AH_ROLL)) { roll = -roll; } pitch = constrain_float(pitch, -ah_max_pitch, ah_max_pitch); float ky = sinf(roll); float kx = cosf(roll); if (fabsf(ky) < fabsf(kx)) { for (int dx = -4; dx <= 4; dx++) { float fy = dx * (ky/kx) + pitch * ah_pitch_rad_to_char + 0.5f; int dy = floorf(fy); char c = (fy - dy) * SYM_AH_H_COUNT; //chars in font in reversed order c = SYM_AH_H_START + ((SYM_AH_H_COUNT - 1) - c); if (dy >= -4 && dy <= 4) { backend->write(x + dx, y - dy, false, "%c", c); } } } else { for (int dy=-4; dy<=4; dy++) { float fx = (dy - pitch * ah_pitch_rad_to_char) * (kx/ky) + 0.5f; int dx = floorf(fx); char c = (fx - dx) * SYM_AH_V_COUNT; c = SYM_AH_V_START + c; if (dx >= -4 && dx <=4) { backend->write(x + dx, y - dy, false, "%c", c); } } } backend->write(x-1,y, false, "%c%c%c", SYM_AH_CENTER_LINE_LEFT, SYM_AH_CENTER, SYM_AH_CENTER_LINE_RIGHT); } void AP_OSD_Screen::draw_distance(uint8_t x, uint8_t y, float distance) { char unit_icon = u_icon(DISTANCE); float distance_scaled = u_scale(DISTANCE, distance); const char *fmt = "%4.0f%c"; if (distance_scaled > 9999.0f) { distance_scaled = u_scale(DISTANCE_LONG, distance); unit_icon= u_icon(DISTANCE_LONG); //try to pack as many useful info as possible if (distance_scaled<9.0f) { fmt = "%1.3f%c"; } else if (distance_scaled < 99.0f) { fmt = "%2.2f%c"; } else if (distance_scaled < 999.0f) { fmt = "%3.1f%c"; } else { fmt = "%4.0f%c"; } } backend->write(x, y, false, fmt, (double)distance_scaled, unit_icon); } void AP_OSD_Screen::draw_home(uint8_t x, uint8_t y) { AP_AHRS &ahrs = AP::ahrs(); WITH_SEMAPHORE(ahrs.get_semaphore()); Location loc; if (ahrs.get_position(loc) && ahrs.home_is_set()) { const Location &home_loc = ahrs.get_home(); float distance = home_loc.get_distance(loc); int32_t angle = wrap_360_cd(loc.get_bearing_to(home_loc) - ahrs.yaw_sensor); int32_t interval = 36000 / SYM_ARROW_COUNT; if (distance < 2.0f) { //avoid fast rotating arrow at small distances angle = 0; } char arrow = SYM_ARROW_START + ((angle + interval / 2) / interval) % SYM_ARROW_COUNT; backend->write(x, y, false, "%c%c", SYM_HOME, arrow); draw_distance(x+2, y, distance); } else { backend->write(x, y, true, "%c", SYM_HOME); } } void AP_OSD_Screen::draw_heading(uint8_t x, uint8_t y) { AP_AHRS &ahrs = AP::ahrs(); uint16_t yaw = ahrs.yaw_sensor / 100; backend->write(x, y, false, "%3d%c", yaw, SYM_DEGR); } void AP_OSD_Screen::draw_throttle(uint8_t x, uint8_t y) { backend->write(x, y, false, "%3d%c", gcs().get_hud_throttle(), SYM_PCNT); } //Thanks to betaflight/inav for simple and clean compass visual design void AP_OSD_Screen::draw_compass(uint8_t x, uint8_t y) { const int8_t total_sectors = 16; static const char compass_circle[total_sectors] = { SYM_HEADING_N, SYM_HEADING_LINE, SYM_HEADING_DIVIDED_LINE, SYM_HEADING_LINE, SYM_HEADING_E, SYM_HEADING_LINE, SYM_HEADING_DIVIDED_LINE, SYM_HEADING_LINE, SYM_HEADING_S, SYM_HEADING_LINE, SYM_HEADING_DIVIDED_LINE, SYM_HEADING_LINE, SYM_HEADING_W, SYM_HEADING_LINE, SYM_HEADING_DIVIDED_LINE, SYM_HEADING_LINE, }; AP_AHRS &ahrs = AP::ahrs(); int32_t yaw = ahrs.yaw_sensor; int32_t interval = 36000 / total_sectors; int8_t center_sector = ((yaw + interval / 2) / interval) % total_sectors; for (int8_t i = -4; i <= 4; i++) { int8_t sector = center_sector + i; sector = (sector + total_sectors) % total_sectors; backend->write(x + i, y, false, "%c", compass_circle[sector]); } } void AP_OSD_Screen::draw_wind(uint8_t x, uint8_t y) { AP_AHRS &ahrs = AP::ahrs(); WITH_SEMAPHORE(ahrs.get_semaphore()); Vector3f v = ahrs.wind_estimate(); if (check_option(AP_OSD::OPTION_INVERTED_WIND)) { v = -v; } backend->write(x, y, false, "%c", SYM_WSPD); draw_speed_vector(x + 1, y, Vector2f(v.x, v.y), ahrs.yaw_sensor); } void AP_OSD_Screen::draw_aspeed(uint8_t x, uint8_t y) { float aspd = 0.0f; AP_AHRS &ahrs = AP::ahrs(); WITH_SEMAPHORE(ahrs.get_semaphore()); bool have_estimate = ahrs.airspeed_estimate(&aspd); if (have_estimate) { backend->write(x, y, false, "%c%4d%c", SYM_ASPD, (int)u_scale(SPEED, aspd), u_icon(SPEED)); } else { backend->write(x, y, false, "%c ---%c", SYM_ASPD, u_icon(SPEED)); } } void AP_OSD_Screen::draw_vspeed(uint8_t x, uint8_t y) { Vector3f v; float vspd; AP_AHRS &ahrs = AP::ahrs(); WITH_SEMAPHORE(ahrs.get_semaphore()); if (ahrs.get_velocity_NED(v)) { vspd = -v.z; } else { auto &baro = AP::baro(); WITH_SEMAPHORE(baro.get_semaphore()); vspd = baro.get_climb_rate(); } char sym; if (vspd > 3.0f) { sym = SYM_UP_UP; } else if (vspd >=0.0f) { sym = SYM_UP; } else if (vspd >= -3.0f) { sym = SYM_DOWN; } else { sym = SYM_DOWN_DOWN; } vspd = fabsf(vspd); backend->write(x, y, false, "%c%2d%c", sym, (int)u_scale(VSPEED, vspd), u_icon(VSPEED)); } #ifdef HAVE_AP_BLHELI_SUPPORT void AP_OSD_Screen::draw_blh_temp(uint8_t x, uint8_t y) { AP_BLHeli *blheli = AP_BLHeli::get_singleton(); if (blheli) { AP_BLHeli::telem_data td; // first parameter is index into array of ESC's. Hardwire to zero (first) for now. if (!blheli->get_telem_data(0, td)) { return; } // AP_BLHeli & blh = AP_BLHeli::AP_BLHeli(); uint8_t esc_temp = td.temperature; backend->write(x, y, false, "%3d%c", (int)u_scale(TEMPERATURE, esc_temp), u_icon(TEMPERATURE)); } } void AP_OSD_Screen::draw_blh_rpm(uint8_t x, uint8_t y) { AP_BLHeli *blheli = AP_BLHeli::get_singleton(); if (blheli) { AP_BLHeli::telem_data td; // first parameter is index into array of ESC's. Hardwire to zero (first) for now. if (!blheli->get_telem_data(0, td)) { return; } backend->write(x, y, false, "%5d%c", td.rpm, SYM_RPM); } } void AP_OSD_Screen::draw_blh_amps(uint8_t x, uint8_t y) { AP_BLHeli *blheli = AP_BLHeli::get_singleton(); if (blheli) { AP_BLHeli::telem_data td; // first parameter is index into array of ESC's. Hardwire to zero (first) for now. if (!blheli->get_telem_data(0, td)) { return; } float esc_amps = td.current * 0.01; backend->write(x, y, false, "%4.1f%c", esc_amps, SYM_AMP); } } #endif //HAVE_AP_BLHELI_SUPPORT void AP_OSD_Screen::draw_gps_latitude(uint8_t x, uint8_t y) { AP_GPS & gps = AP::gps(); const Location &loc = gps.location(); // loc.lat and loc.lng int32_t dec_portion, frac_portion; int32_t abs_lat = labs(loc.lat); dec_portion = loc.lat / 10000000L; frac_portion = abs_lat - labs(dec_portion)*10000000UL; backend->write(x, y, false, "%c%4ld.%07ld", SYM_GPS_LAT, (long)dec_portion,(long)frac_portion); } void AP_OSD_Screen::draw_gps_longitude(uint8_t x, uint8_t y) { AP_GPS & gps = AP::gps(); const Location &loc = gps.location(); // loc.lat and loc.lng int32_t dec_portion, frac_portion; int32_t abs_lon = labs(loc.lng); dec_portion = loc.lng / 10000000L; frac_portion = abs_lon - labs(dec_portion)*10000000UL; backend->write(x, y, false, "%c%4ld.%07ld", SYM_GPS_LONG, (long)dec_portion,(long)frac_portion); } void AP_OSD_Screen::draw_roll_angle(uint8_t x, uint8_t y) { AP_AHRS &ahrs = AP::ahrs(); uint16_t roll = abs(ahrs.roll_sensor) / 100; char r; if (ahrs.roll_sensor > 50) { r = SYM_ROLLR; } else if (ahrs.roll_sensor < -50) { r = SYM_ROLLL; } else { r = SYM_ROLL0; } backend->write(x, y, false, "%c%3d%c", r, roll, SYM_DEGR); } void AP_OSD_Screen::draw_pitch_angle(uint8_t x, uint8_t y) { AP_AHRS &ahrs = AP::ahrs(); uint16_t pitch = abs(ahrs.pitch_sensor) / 100; char p; if (ahrs.pitch_sensor > 50) { p = SYM_PTCHUP; } else if (ahrs.pitch_sensor < -50) { p = SYM_PTCHDWN; } else { p = SYM_PTCH0; } backend->write(x, y, false, "%c%3d%c", p, pitch, SYM_DEGR); } void AP_OSD_Screen::draw_temp(uint8_t x, uint8_t y) { AP_Baro &barometer = AP::baro(); float tmp = barometer.get_temperature(); backend->write(x, y, false, "%3d%c", (int)u_scale(TEMPERATURE, tmp), u_icon(TEMPERATURE)); } void AP_OSD_Screen::draw_hdop(uint8_t x, uint8_t y) { AP_GPS & gps = AP::gps(); float hdp = gps.get_hdop() / 100.0f; backend->write(x, y, false, "%c%c%3.2f", SYM_HDOP_L, SYM_HDOP_R, (double)hdp); } void AP_OSD_Screen::draw_waypoint(uint8_t x, uint8_t y) { AP_AHRS &ahrs = AP::ahrs(); int32_t angle = wrap_360_cd(osd->nav_info.wp_bearing - ahrs.yaw_sensor); int32_t interval = 36000 / SYM_ARROW_COUNT; if (osd->nav_info.wp_distance < 2.0f) { //avoid fast rotating arrow at small distances angle = 0; } char arrow = SYM_ARROW_START + ((angle + interval / 2) / interval) % SYM_ARROW_COUNT; backend->write(x,y, false, "%c%2u%c",SYM_WPNO, osd->nav_info.wp_number, arrow); draw_distance(x+4, y, osd->nav_info.wp_distance); } void AP_OSD_Screen::draw_xtrack_error(uint8_t x, uint8_t y) { backend->write(x, y, false, "%c%4d", SYM_XERR, (int)osd->nav_info.wp_xtrack_error); } void AP_OSD_Screen::draw_stat(uint8_t x, uint8_t y) { backend->write(x+2, y, false, "%c%c%c", 0x4d,0x41,0x58); backend->write(x, y+1, false, "%c",SYM_GSPD); backend->write(x+1, y+1, false, "%4d%c", (int)u_scale(SPEED, osd->max_speed_mps), u_icon(SPEED)); backend->write(x, y+2, false, "%5.1f%c", (double)osd->max_current_a, SYM_AMP); backend->write(x, y+3, false, "%5d%c", (int)u_scale(ALTITUDE, osd->max_alt_m), u_icon(ALTITUDE)); backend->write(x, y+4, false, "%c", SYM_HOME); draw_distance(x+1, y+4, osd->max_dist_m); backend->write(x, y+5, false, "%c", SYM_DIST); draw_distance(x+1, y+5, osd->last_distance_m); } void AP_OSD_Screen::draw_dist(uint8_t x, uint8_t y) { backend->write(x, y, false, "%c", SYM_DIST); draw_distance(x+1, y, osd->last_distance_m); } void AP_OSD_Screen::draw_flightime(uint8_t x, uint8_t y) { AP_Stats *stats = AP::stats(); if (stats) { uint32_t t = stats->get_flight_time_s(); backend->write(x, y, false, "%c%3u:%02u", SYM_FLY, t/60, t%60); } } void AP_OSD_Screen::draw_eff(uint8_t x, uint8_t y) { AP_BattMonitor &battery = AP::battery(); AP_AHRS &ahrs = AP::ahrs(); WITH_SEMAPHORE(ahrs.get_semaphore()); Vector2f v = ahrs.groundspeed_vector(); float speed = u_scale(SPEED,v.length()); float current_amps; if ((speed > 2.0) && battery.current_amps(current_amps)){ backend->write(x, y, false, "%c%3d%c", SYM_EFF,int(1000.0f*current_amps/speed),SYM_MAH); } else { backend->write(x, y, false, "%c---%c", SYM_EFF,SYM_MAH); } } void AP_OSD_Screen::draw_climbeff(uint8_t x, uint8_t y) { char unit_icon = u_icon(DISTANCE); Vector3f v; float vspd; auto &ahrs = AP::ahrs(); WITH_SEMAPHORE(ahrs.get_semaphore()); if (ahrs.get_velocity_NED(v)) { vspd = -v.z; } else { auto &baro = AP::baro(); WITH_SEMAPHORE(baro.get_semaphore()); vspd = baro.get_climb_rate(); } if (vspd < 0.0) vspd = 0.0; AP_BattMonitor &battery = AP::battery(); float amps; if (battery.current_amps(amps) && is_positive(amps)) { backend->write(x, y, false,"%c%c%3.1f%c",SYM_PTCHUP,SYM_EFF,(double)(3.6f * u_scale(VSPEED,vspd)/amps),unit_icon); } else { backend->write(x, y, false,"%c%c---%c",SYM_PTCHUP,SYM_EFF,unit_icon); } } void AP_OSD_Screen::draw_btemp(uint8_t x, uint8_t y) { AP_Baro &barometer = AP::baro(); float btmp = barometer.get_temperature(1); backend->write(x, y, false, "%3d%c", (int)u_scale(TEMPERATURE, btmp), u_icon(TEMPERATURE)); } void AP_OSD_Screen::draw_atemp(uint8_t x, uint8_t y) { AP_Airspeed *airspeed = AP_Airspeed::get_singleton(); if (!airspeed) { return; } float temperature = 0; airspeed->get_temperature(temperature); if (airspeed->healthy()) { backend->write(x, y, false, "%3d%c", (int)u_scale(TEMPERATURE, temperature), u_icon(TEMPERATURE)); } else { backend->write(x, y, false, "--%c", u_icon(TEMPERATURE)); } } void AP_OSD_Screen::draw_bat2_vlt(uint8_t x, uint8_t y) { AP_BattMonitor &battery = AP::battery(); uint8_t pct2 = battery.capacity_remaining_pct(1); uint8_t p2 = (100 - pct2) / 16.6; float v2 = battery.voltage(1); backend->write(x,y, v2 < osd->warn_bat2volt, "%c%2.1f%c", SYM_BATT_FULL + p2, (double)v2, SYM_VOLT); } void AP_OSD_Screen::draw_bat2used(uint8_t x, uint8_t y) { draw_batused(1, x, y); } void AP_OSD_Screen::draw_aspd1(uint8_t x, uint8_t y) { AP_Airspeed *airspeed = AP_Airspeed::get_singleton(); if (!airspeed) { return; } float asp1 = airspeed->get_airspeed(); if (airspeed != nullptr && airspeed->healthy()) { backend->write(x, y, false, "%c%4d%c", SYM_ASPD, (int)u_scale(SPEED, asp1), u_icon(SPEED)); } else { backend->write(x, y, false, "%c ---%c", SYM_ASPD, u_icon(SPEED)); } } void AP_OSD_Screen::draw_aspd2(uint8_t x, uint8_t y) { AP_Airspeed *airspeed = AP_Airspeed::get_singleton(); if (!airspeed) { return; } float asp2 = airspeed->get_airspeed(1); if (airspeed != nullptr && airspeed->healthy(1)) { backend->write(x, y, false, "%c%4d%c", SYM_ASPD, (int)u_scale(SPEED, asp2), u_icon(SPEED)); } else { backend->write(x, y, false, "%c ---%c", SYM_ASPD, u_icon(SPEED)); } } #define DRAW_SETTING(n) if (n.enabled) draw_ ## n(n.xpos, n.ypos) void AP_OSD_Screen::draw(void) { if (!enabled || !backend) { return; } //Note: draw order should be optimized. //Big and less important items should be drawn first, //so they will not overwrite more important ones. DRAW_SETTING(message); DRAW_SETTING(horizon); DRAW_SETTING(compass); DRAW_SETTING(altitude); DRAW_SETTING(waypoint); DRAW_SETTING(xtrack_error); DRAW_SETTING(bat_volt); DRAW_SETTING(bat2_vlt); DRAW_SETTING(rssi); DRAW_SETTING(current); DRAW_SETTING(batused); DRAW_SETTING(bat2used); DRAW_SETTING(sats); DRAW_SETTING(fltmode); DRAW_SETTING(gspeed); DRAW_SETTING(aspeed); DRAW_SETTING(aspd1); DRAW_SETTING(aspd2); DRAW_SETTING(vspeed); DRAW_SETTING(throttle); DRAW_SETTING(heading); DRAW_SETTING(wind); DRAW_SETTING(home); DRAW_SETTING(roll_angle); DRAW_SETTING(pitch_angle); DRAW_SETTING(temp); DRAW_SETTING(btemp); DRAW_SETTING(atemp); DRAW_SETTING(hdop); DRAW_SETTING(flightime); #ifdef HAVE_AP_BLHELI_SUPPORT DRAW_SETTING(blh_temp); DRAW_SETTING(blh_rpm); DRAW_SETTING(blh_amps); #endif DRAW_SETTING(gps_latitude); DRAW_SETTING(gps_longitude); DRAW_SETTING(dist); DRAW_SETTING(stat); DRAW_SETTING(climbeff); DRAW_SETTING(eff); }