/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_Motors6DOF.cpp - ArduSub motors library */ #include #include #include "AP_Motors6DOF.h" #include #include #include "../../ArduSub/Sub.h" extern const AP_HAL::HAL& hal; // parameters for the motor class const AP_Param::GroupInfo AP_Motors6DOF::var_info[] = { AP_NESTEDGROUPINFO(AP_MotorsMulticopter, 0), // @Param: 1_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("1_DIRECTION", 1, AP_Motors6DOF, _motor_reverse[0], 1), // @Param: 2_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("2_DIRECTION", 2, AP_Motors6DOF, _motor_reverse[1], 1), // @Param: 3_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("3_DIRECTION", 3, AP_Motors6DOF, _motor_reverse[2], 1), // @Param: 4_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("4_DIRECTION", 4, AP_Motors6DOF, _motor_reverse[3], 1), // @Param: 5_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("5_DIRECTION", 5, AP_Motors6DOF, _motor_reverse[4], 1), // @Param: 6_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("6_DIRECTION", 6, AP_Motors6DOF, _motor_reverse[5], 1), // @Param: 7_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("7_DIRECTION", 7, AP_Motors6DOF, _motor_reverse[6], 1), // @Param: 8_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("8_DIRECTION", 8, AP_Motors6DOF, _motor_reverse[7], 1), // @Param: FV_CPLNG_K // @DisplayName: Forward/vertical to pitch decoupling factor // @Description: Used to decouple pitch from forward/vertical motion. 0 to disable, 1.2 normal // @Range: 0.0 1.5 // @Increment: 0.1 // @User: Standard AP_GROUPINFO("FV_CPLNG_K", 9, AP_Motors6DOF, _forwardVerticalCouplingFactor, 1.0), // @Param: 9_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("9_DIRECTION", 10, AP_Motors6DOF, _motor_reverse[8], 1), // @Param: 10_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("10_DIRECTION", 11, AP_Motors6DOF, _motor_reverse[9], 1), // @Param: 11_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("11_DIRECTION", 12, AP_Motors6DOF, _motor_reverse[10], 1), // @Param: 12_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("12_DIRECTION", 13, AP_Motors6DOF, _motor_reverse[11], 1), AP_GROUPEND }; void AP_Motors6DOF::setup_motors(motor_frame_class frame_class, motor_frame_type frame_type) { // remove existing motors for (int8_t i=0; iration /* if (fabsf(thrust_in - last_thrust_in[i]) > ratio) {//缓加缓减 if (thrust >= last_thrust_Dhot[i] + step) {//新的Dshot >当前的Dshot + 步长 last_thrust_Dhot[i] += step; } else if(thrust <= last_thrust_Dhot[i] -step) {//新的Dshot < 当前的Dshot -步长 last_thrust_Dhot[i] -= step; } if (thrust>=last_thrust_Dhot[i] - step_thrust && thrust<=last_thrust_Dhot[i] + step_thrust){ last_thrust_in[i] = thrust_in; last_thrust_Dhot[i] = thrust; } if ((last_thrust_Dhot[i]< step && last_thrust_Dhot[i]> -step) && thrust == 0) { last_thrust_Dhot[i] =0; } } else{ //比例之差=last_thrust_Dhot[i] - stephv && thrust<=last_thrust_Dhot[i] + stephv){ last_thrust_Dhot[i] = thrust; }else if (thrust >= last_thrust_Dhot[i] + stephv) {//新的Dshot >当前的Dshot + 步长 last_thrust_Dhot[i] += stephv; } else if(thrust <= last_thrust_Dhot[i] -stephv) {//新的Dshot < 当前的Dshot -步长 last_thrust_Dhot[i] -= stephv; } if (last_thrust_Dhot[i]< stephv && last_thrust_Dhot[i]> -stephv) { last_thrust_Dhot[i] =0; } static int k = 0; k++; if(k>400) { //gcs().send_text(MAV_SEVERITY_INFO, "_thrust_rpyt_out %d %d ,%d \n",(int)last_thrust_Dhot[2],(int)last_thrust_Dhot[3],(int)last_thrust_Dhot[4]); } int16_t speedref = (int16_t)((int32_t)last_thrust_Dhot[i]*hv_max/1000); return constrain_int16(speedref,-hv_max, hv_max); } } int16_t AP_Motors6DOF::calc_thrust_to_Dshot(float thrust_in,int8_t i) { int16_t thrust = 0; float ratio= 0.02;//阶跃百分比 int16_t step = 8;//4;//步长 0加到1024需要320毫秒 int16_t step_thrust = 8;//4;//退出缓启动的条件 thrust = (int16_t)(thrust_in* ThrustScale); //输入比例与上次比例差 >ration if (fabsf(thrust_in - last_thrust_in[i]) > ratio) {//缓加缓减 if (thrust >= last_thrust_Dhot[i] + step) {//新的Dshot >当前的Dshot + 步长 last_thrust_Dhot[i] += step; } else if(thrust <= last_thrust_Dhot[i] -step) {//新的Dshot < 当前的Dshot -步长 last_thrust_Dhot[i] -= step; } if (thrust>=last_thrust_Dhot[i] - step_thrust && thrust<=last_thrust_Dhot[i] + step_thrust){ last_thrust_in[i] = thrust_in; last_thrust_Dhot[i] = thrust; } if ((last_thrust_Dhot[i]< step && last_thrust_Dhot[i]> -step) && thrust == 0) { last_thrust_Dhot[i] =0; } } else{ //比例之差= _throttle_thrust_max) { throttle_thrust = _throttle_thrust_max; limit.throttle_upper = true; } // calculate roll, pitch and yaw for each motor for (i=0; i= _throttle_thrust_max) { throttle_thrust = _throttle_thrust_max; limit.throttle_upper = true; } // calculate roll, pitch and yaw for each motor for (i=0; i _batt_current_max * 1.5f) { batt_current_ratio = 2.5f; } else if (_batt_current < _batt_current_max && predicted_current > _batt_current_max) { batt_current_ratio = predicted_current_ratio; } _output_limited += (loop_interval/(loop_interval+_batt_current_time_constant)) * (1 - batt_current_ratio); _output_limited = constrain_float(_output_limited, 0.0f, 1.0f); for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { _thrust_rpyt_out[i] *= _output_limited; } } } // output_armed - sends commands to the motors // includes new scaling stability patch // TODO pull code that is common to output_armed_not_stabilizing into helper functions // ToDo calculate headroom for rpy to be added for stabilization during full throttle/forward/lateral commands void AP_Motors6DOF::output_armed_stabilizing_vectored() { uint8_t i; // general purpose counter float roll_thrust; // roll thrust input value, +/- 1.0 float pitch_thrust; // pitch thrust input value, +/- 1.0 float yaw_thrust; // yaw thrust input value, +/- 1.0 float throttle_thrust; // throttle thrust input value, +/- 1.0 float forward_thrust; // forward thrust input value, +/- 1.0 float lateral_thrust; // lateral thrust input value, +/- 1.0 roll_thrust = (_roll_in + _roll_in_ff); pitch_thrust = (_pitch_in + _pitch_in_ff); yaw_thrust = (_yaw_in + _yaw_in_ff); throttle_thrust = get_throttle_bidirectional(); forward_thrust = _forward_in; lateral_thrust = _lateral_in; float rpy_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times. float linear_out[AP_MOTORS_MAX_NUM_MOTORS]; // 3 linear DOF mix for each motor // initialize limits flags limit.roll= false; limit.pitch = false; limit.yaw = false; limit.throttle_lower = false; limit.throttle_upper = false; // sanity check throttle is above zero and below current limited throttle if (throttle_thrust <= -_throttle_thrust_max) { throttle_thrust = -_throttle_thrust_max; limit.throttle_lower = true; } if (throttle_thrust >= _throttle_thrust_max) { throttle_thrust = _throttle_thrust_max; limit.throttle_upper = true; } // calculate roll, pitch and yaw for each motor for (i=0; i= _throttle_thrust_max) { throttle_thrust = _throttle_thrust_max; limit.throttle_upper = true; } // calculate roll, pitch and Throttle for each motor (only used by vertical thrusters) rpt_max = 1; //Initialized to 1 so that normalization will only occur if value is saturated for (i=0; i rpt_max) { rpt_max = fabsf(rpt_out[i]); } } } // calculate linear/yaw command for each motor (only used for translational thrusters) // linear factors should be 0.0 or 1.0 for now yfl_max = 1; //Initialized to 1 so that normalization will only occur if value is saturated for (i=0; i yfl_max) { yfl_max = fabsf(yfl_out[i]); } } } // Calculate final output for each motor and normalize if necessary for (i=0; i= AP_MOTORS_MAX_NUM_MOTORS) { return Vector3f(0,0,0); } return Vector3f(_roll_factor[motor_number], _pitch_factor[motor_number], _yaw_factor[motor_number]); } bool AP_Motors6DOF::motor_is_enabled(int motor_number) { if (motor_number < 0 || motor_number >= AP_MOTORS_MAX_NUM_MOTORS) { return false; } return motor_enabled[motor_number]; } bool AP_Motors6DOF::set_reversed(int motor_number, bool reversed) { if (motor_number < 0 || motor_number >= AP_MOTORS_MAX_NUM_MOTORS) { return false; } if (reversed) { _motor_reverse[motor_number].set_and_save(-1); } else { _motor_reverse[motor_number].set_and_save(1); } return true; } //--------------wangdan-------- AP_Motors6DOF *AP_Motors6DOF::_singleton; namespace AP { AP_Motors6DOF &motors6dof() { return *AP_Motors6DOF::get_singleton(); } };