/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
// Copyright 2010 Michael Smith, all rights reserved.
// Derived closely from:
/****************************************
* 3D Vector Classes
* By Bill Perone (billperone@yahoo.com)
* Original: 9-16-2002
* Revised: 19-11-2003
* 11-12-2003
* 18-12-2003
* 06-06-2004
*
* Copyright 2003, This code is provided "as is" and you can use it freely as long as
* credit is given to Bill Perone in the application it is used in
*
* Notes:
* if a*b = 0 then a & b are orthogonal
* a%b = -b%a
* a*(b%c) = (a%b)*c
* a%b = a(cast to matrix)*b
* (a%b).length() = area of parallelogram formed by a & b
* (a%b).length() = a.length()*b.length() * sin(angle between a & b)
* (a%b).length() = 0 if angle between a & b = 0 or a.length() = 0 or b.length() = 0
* a * (b%c) = volume of parallelpiped formed by a, b, c
* vector triple product: a%(b%c) = b*(a*c) - c*(a*b)
* scalar triple product: a*(b%c) = c*(a%b) = b*(c%a)
* vector quadruple product: (a%b)*(c%d) = (a*c)*(b*d) - (a*d)*(b*c)
* if a is unit vector along b then a%b = -b%a = -b(cast to matrix)*a = 0
* vectors a1...an are linearly dependent if there exists a vector of scalars (b) where a1*b1 + ... + an*bn = 0
* or if the matrix (A) * b = 0
*
****************************************/
#pragma once
#include
#include
#include
#if MATH_CHECK_INDEXES
#include
#endif
#include "rotations.h"
template
class Matrix4;
template
class Vector4
{
public:
T M0, M1, M2, M3;
// trivial ctor
constexpr Vector4()
: M0(0)
, M1(0)
, M2(0)
, M3(0){}
// setting ctor
constexpr Vector4(const T x0, const T x1, const T x2,const T x3)
: M0(x0)
, M1(x1)
, M2(x2)
, M3(x3){}
// function call operator
void operator ()(const T x0, const T x1, const T x2,const T x3)
{
M0= x0; M1= x1; M2= x2;M3= x3;
}
// gets the length of this vector
float length(void) const;
// dot product
T operator *(const Vector4 &v) const;
// uniform scaling
Vector4 operator *(const T num) const;
// uniform scaling
Vector4 &operator *=(const T num);
// uniform scaling
Vector4 &operator /=(const T num);
// uniform scaling
Vector4 operator /(const T num) const;
// subtraction
Vector4 &operator -=(const Vector4 &v);
// subtraction
Vector4 operator -(const Vector4 &v) const;
// negation
Vector4 operator -(void) const;
// addition
Vector4 &operator +=(const Vector4 &v);
// addition
Vector4 operator +(const Vector4 &v) const;
// test for equality
bool operator ==(const Vector4 &v) const;
// test for inequality
bool operator !=(const Vector4 &v) const;
// non-uniform scaling
Vector4 &operator *=(const Vector4 &v) {
M0 *= v.M0; M1 *= v.M1; M2 *= v.M2;M3 *= v.M3;
return *this;
}
// check if any elements are NAN
bool is_nan(void) const WARN_IF_UNUSED;
// check if any elements are infinity
bool is_inf(void) const WARN_IF_UNUSED;
// check if all elements are zero
bool is_zero(void) const WARN_IF_UNUSED {
return (fabsf(M0) < FLT_EPSILON) &&
(fabsf(M1) < FLT_EPSILON) &&
(fabsf(M2) < FLT_EPSILON) &&
(fabsf(M3) < FLT_EPSILON);
}
// gets the length of this vector squared
T length_squared() const
{
return (T)(*this * *this);
}
// normalizes this vector
void normalize()
{
*this /= length();
}
// zero the vector
void zero()
{
M0 = M1 = M2 = M3 = 0;
}
// returns the normalized version of this vector
Vector4 normalized() const
{
return *this/length();
}
};
typedef Vector4 Vector4i;
typedef Vector4 Vector4ui;
typedef Vector4 Vector4l;
typedef Vector4 Vector4ul;
typedef Vector4 Vector4f;