/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#pragma once
/*
This is the main Sub class
*/
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
#include
#include
#include
#include
// Common dependencies
#include
#include
#include
#include
#include
#include // interface and maths for accelerometer calibration
#include // ArduPilot Mega Vector/Matrix math Library
#include // ArduPilot Mega Declination Helper Library
// Application dependencies
#include // Serial manager library
#include // ArduPilot GPS library
#include // ArduPilot Mega Flash Memory Library
#include
#include // ArduPilot Mega Magnetometer Library
#include // ArduPilot Mega Inertial Sensor (accel & gyro) Library
#include
#include
#include
#include // Mission command library
#include // P library
#include // PID library
#include // PI library (2-axis)
#include // PID library (2-axis)
#include // Attitude control library
#include // Position control library
#include // AP Motors library
#include // Range finder library
#include // Filter library
#include // APM relay
#include
#include // Camera/Antenna mount
#include // needed for AHRS build
#include // ArduPilot Mega inertial navigation library
#include // Waypoint navigation library
#include
#include // circle navigation library
#include // Fence library
#include // main loop scheduler
#include // loop perf monitoring
#include // Notify library
#include // Battery monitor library
#include // board configuration library
#include
#include
#include // Joystick/gamepad button function assignment
#include // Leak detector
#include
#include
// Local modules
#include "defines.h"
#include "config.h"
#include "GCS_Mavlink.h"
#include "RC_Channel.h" // RC Channel Library
#include "Parameters.h"
#include "AP_Arming_Sub.h"
#include "GCS_Sub.h"
//------self define start-------------------
#include "Gearmotorpid.h"
#ifndef USERHOOK_50HZLOOP
#define USERHOOK_50HZLOOP 1
#endif
#define startval 0
#define Speedmax_hand 62
#define Speedmax_hand_f 62.0
#define speedmin 31
#define maxerror 41//31
#define maxerror_f 41.0//31.0
#define Horizontal 0
#define Vertical 1
#define section0 0
#define section90 1
#define section_90 2
#define action_Hor 0
#define action_Ver_postive 1
#define action_Ver_negtive 2
#define Orign 0
#define foward 1
#define backward 2
#define Speedmax 60
//压力等级 包含下压和上浮总共10级 第五级为1500 即中值
enum PressNetLevel {
first = 0,
second = 1,
third = 2,
forth = 3,
fifth = 4,
no =5,
sixth = 6,
seventh = 7,
eighth = 8,
ninth = 9,
tenth = 10
};
#define SaberDatapacketID 0x8106
#define RespAllStatusID 0x8602
#define SystemResetAckID 0x8401
#define Saber_selftest_Failed 0x08 //自检失败
#define Saber_WakeUpHost 0x0101 //WakeUp模式
#define Saber_MesureMode 0x02 //测量模式
//usigned char to float将char类型转换成float类型
typedef union{
unsigned char u[4];
float f;
}uTof;
//------self define end-------------------
// libraries which are dependent on #defines in defines.h and/or config.h
#if OPTFLOW == ENABLED
#include // Optical Flow library
#endif
#if RCMAP_ENABLED == ENABLED
#include // RC input mapping library
#endif
#if RPM_ENABLED == ENABLED
#include
#endif
#if GRIPPER_ENABLED == ENABLED
#include // gripper stuff
#endif
#if PROXIMITY_ENABLED == ENABLED
#include
#endif
#if AVOIDANCE_ENABLED == ENABLED
#include // Stop at fence library
#endif
#if AC_RALLY == ENABLED
#include // Rally point library
#endif
#if CAMERA == ENABLED
#include // Photo or video camera
#endif
#ifdef ENABLE_SCRIPTING
#include
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include
#endif
class Sub : public AP_HAL::HAL::Callbacks {
public:
friend class GCS_MAVLINK_Sub;
friend class GCS_Sub;
friend class Parameters;
friend class ParametersG2;
friend class AP_Arming_Sub;
friend class RC_Channels_Sub;
Sub(void);
// HAL::Callbacks implementation.
void setup() override;
void loop() override;
private:
static const AP_FWVersion fwver;
// key aircraft parameters passed to multiple libraries
AP_Vehicle::MultiCopter aparm;
// Global parameters are all contained within the 'g' class.
Parameters g;
ParametersG2 g2;
// main loop scheduler
AP_Scheduler scheduler{FUNCTOR_BIND_MEMBER(&Sub::fast_loop, void)};
// AP_Notify instance
AP_Notify notify;
// primary input control channels
RC_Channel *channel_roll;
RC_Channel *channel_pitch;
RC_Channel *channel_throttle;
RC_Channel *channel_yaw;
RC_Channel *channel_forward;
RC_Channel *channel_lateral;
AP_Logger logger;
AP_GPS gps;
AP_LeakDetector leak_detector;
TSYS01 celsius;
Compass compass;
AP_InertialSensor ins;
RangeFinder rangefinder;
struct {
bool enabled:1;
bool alt_healthy:1; // true if we can trust the altitude from the rangefinder
int16_t alt_cm; // tilt compensated altitude (in cm) from rangefinder
uint32_t last_healthy_ms;
LowPassFilterFloat alt_cm_filt; // altitude filter
} rangefinder_state = { false, false, 0, 0 };
#if RPM_ENABLED == ENABLED
AP_RPM rpm_sensor;
#endif
// Inertial Navigation EKF
NavEKF2 EKF2{&ahrs, rangefinder};
NavEKF3 EKF3{&ahrs, rangefinder};
AP_AHRS_NavEKF ahrs{EKF2, EKF3, AP_AHRS_NavEKF::FLAG_ALWAYS_USE_EKF};
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
SITL::SITL sitl;
#endif
// Mission library
AP_Mission mission{
FUNCTOR_BIND_MEMBER(&Sub::start_command, bool, const AP_Mission::Mission_Command &),
FUNCTOR_BIND_MEMBER(&Sub::verify_command_callback, bool, const AP_Mission::Mission_Command &),
FUNCTOR_BIND_MEMBER(&Sub::exit_mission, void)};
// Optical flow sensor
#if OPTFLOW == ENABLED
OpticalFlow optflow;
#endif
// system time in milliseconds of last recorded yaw reset from ekf
uint32_t ekfYawReset_ms = 0;
AP_SerialManager serial_manager;
// GCS selection
GCS_Sub _gcs; // avoid using this; use gcs()
GCS_Sub &gcs() { return _gcs; }
// User variables
#ifdef USERHOOK_VARIABLES
# include USERHOOK_VARIABLES
#endif
// Documentation of Globals:
union {
struct {
uint8_t pre_arm_check : 1; // true if all pre-arm checks (rc, accel calibration, gps lock) have been performed
uint8_t logging_started : 1; // true if logging has started
uint8_t compass_mot : 1; // true if we are currently performing compassmot calibration
uint8_t motor_test : 1; // true if we are currently performing the motors test
uint8_t initialised : 1; // true once the init_ardupilot function has completed. Extended status to GCS is not sent until this completes
uint8_t gps_base_pos_set : 1; // true when the gps base position has been set (used for RTK gps only)
uint8_t at_bottom : 1; // true if we are at the bottom
uint8_t at_surface : 1; // true if we are at the surface
uint8_t depth_sensor_present: 1; // true if there is a depth sensor detected at boot
uint8_t compass_init_location:1; // true when the compass's initial location has been set
};
uint32_t value;
} ap;
// This is the state of the flight control system
// There are multiple states defined such as STABILIZE, ACRO,
#if RCMAP_ENABLED == ENABLED
RCMapper rcmap;
#endif
// board specific config
AP_BoardConfig BoardConfig;
#if HAL_WITH_UAVCAN
// board specific config for CAN bus
AP_BoardConfig_CAN BoardConfig_CAN;
#endif
// Failsafe
struct {
uint32_t last_leak_warn_ms; // last time a leak warning was sent to gcs
uint32_t last_gcs_warn_ms;
uint32_t last_heartbeat_ms; // the time when the last HEARTBEAT message arrived from a GCS - used for triggering gcs failsafe
uint32_t last_pilot_input_ms; // last time we received pilot input in the form of MANUAL_CONTROL or RC_CHANNELS_OVERRIDE messages
uint32_t terrain_first_failure_ms; // the first time terrain data access failed - used to calculate the duration of the failure
uint32_t terrain_last_failure_ms; // the most recent time terrain data access failed
uint32_t last_crash_warn_ms; // last time a crash warning was sent to gcs
uint32_t last_ekf_warn_ms; // last time an ekf warning was sent to gcs
uint8_t pilot_input : 1; // true if pilot input failsafe is active, handles things like joystick being disconnected during operation
uint8_t gcs : 1; // A status flag for the ground station failsafe
uint8_t ekf : 1; // true if ekf failsafe has occurred
uint8_t terrain : 1; // true if the missing terrain data failsafe has occurred
uint8_t leak : 1; // true if leak recently detected
uint8_t internal_pressure : 1; // true if internal pressure is over threshold
uint8_t internal_temperature : 1; // true if temperature is over threshold
uint8_t crash : 1; // true if we are crashed
uint8_t sensor_health : 1; // true if at least one sensor has triggered a failsafe (currently only used for depth in depth enabled modes)
} failsafe;
bool any_failsafe_triggered() const {
return (failsafe.pilot_input || battery.has_failsafed() || failsafe.gcs || failsafe.ekf || failsafe.terrain);
}
// sensor health for logging
struct {
uint8_t baro : 1; // true if any single baro is healthy
uint8_t depth : 1; // true if depth sensor is healthy
uint8_t compass : 1; // true if compass is healthy
} sensor_health;
// Baro sensor instance index of the external water pressure sensor
uint8_t depth_sensor_idx;
// GPS variables
// Sometimes we need to remove the scaling for distance calcs
float scaleLongDown;
// Auto
AutoMode auto_mode; // controls which auto controller is run
// Guided
GuidedMode guided_mode; // controls which controller is run (pos or vel)
// Circle
bool circle_pilot_yaw_override; // true if pilot is overriding yaw
// Stores initial bearing when armed
int32_t initial_armed_bearing;
// Throttle variables
int16_t desired_climb_rate; // pilot desired climb rate - for logging purposes only
// Loiter control
uint16_t loiter_time_max; // How long we should stay in Loiter Mode for mission scripting (time in seconds)
uint32_t loiter_time; // How long have we been loitering - The start time in millis
// Delay the next navigation command
uint32_t nav_delay_time_max_ms; // used for delaying the navigation commands
uint32_t nav_delay_time_start_ms;
// Battery Sensors
AP_BattMonitor battery{MASK_LOG_CURRENT,
FUNCTOR_BIND_MEMBER(&Sub::handle_battery_failsafe, void, const char*, const int8_t),
_failsafe_priorities};
// Altitude
// The cm/s we are moving up or down based on filtered data - Positive = UP
int16_t climb_rate;
float target_rangefinder_alt; // desired altitude in cm above the ground
bool holding_depth;
// Turn counter
int32_t quarter_turn_count;
uint8_t last_turn_state;
// Input gain
float gain;
// Flag indicating if we are currently using input hold
bool input_hold_engaged;
// 3D Location vectors
// Current location of the Sub (altitude is relative to home)
Location current_loc;
// Navigation Yaw control
// auto flight mode's yaw mode
uint8_t auto_yaw_mode;
// Yaw will point at this location if auto_yaw_mode is set to AUTO_YAW_ROI
Vector3f roi_WP;
// bearing from current location to the yaw_look_at_WP
float yaw_look_at_WP_bearing;
float yaw_xtrack_correct_heading;
// yaw used for YAW_LOOK_AT_HEADING yaw_mode
int32_t yaw_look_at_heading;
// Deg/s we should turn
int16_t yaw_look_at_heading_slew;
// heading when in yaw_look_ahead_bearing
float yaw_look_ahead_bearing;
// Delay Mission Scripting Command
int32_t condition_value; // used in condition commands (eg delay, change alt, etc.)
uint32_t condition_start;
// IMU variables
// Integration time (in seconds) for the gyros (DCM algorithm)
// Updated with the fast loop
float G_Dt;
// Inertial Navigation
AP_InertialNav_NavEKF inertial_nav;
AP_AHRS_View ahrs_view;
// Attitude, Position and Waypoint navigation objects
// To-Do: move inertial nav up or other navigation variables down here
AC_AttitudeControl_Sub attitude_control;
AC_PosControl_Sub pos_control;
AC_WPNav wp_nav;
AC_Loiter loiter_nav;
AC_Circle circle_nav;
// Reference to the relay object
AP_Relay relay;
// handle repeated servo and relay events
AP_ServoRelayEvents ServoRelayEvents;
// Camera
#if CAMERA == ENABLED
AP_Camera camera{MASK_LOG_CAMERA, current_loc};
#endif
// Camera/Antenna mount tracking and stabilisation stuff
#if MOUNT == ENABLED
// current_loc uses the baro/gps soloution for altitude rather than gps only.
AP_Mount camera_mount{current_loc};
#endif
// AC_Fence library to reduce fly-aways
#if AC_FENCE == ENABLED
AC_Fence fence;
#endif
#if AVOIDANCE_ENABLED == ENABLED
AC_Avoid avoid;
#endif
// Rally library
#if AC_RALLY == ENABLED
AP_Rally rally;
#endif
// terrain handling
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
AP_Terrain terrain{mission};
#endif
// used to allow attitude and depth control without a position system
struct attitude_no_gps_struct {
uint32_t last_message_ms;
mavlink_set_attitude_target_t packet;
};
attitude_no_gps_struct set_attitude_target_no_gps {0};
// Top-level logic
// setup the var_info table
AP_Param param_loader;
uint32_t last_pilot_heading;
uint32_t last_input_ms;
uint32_t last_input_ms_stable;
int32_t last_roll_s;
int32_t last_pitch_s;
int32_t last_yaw_s;
int32_t last_roll;
int32_t last_pitch;
int32_t last_yaw;
uint32_t last_pilot_yaw_input_ms;
uint32_t fs_terrain_recover_start_ms;
static const AP_Scheduler::Task scheduler_tasks[];
static const AP_Param::Info var_info[];
static const struct LogStructure log_structure[];
void fast_loop();
void fifty_hz_loop();
void update_batt_compass(void);
void ten_hz_logging_loop();
void twentyfive_hz_logging();
void three_hz_loop();
void one_hz_loop();
void update_GPS(void);
void update_turn_counter();
void read_AHRS(void);
void update_altitude();
float get_smoothing_gain();
void get_pilot_desired_lean_angles(float roll_in, float pitch_in, float &roll_out, float &pitch_out, float angle_max);
float get_pilot_desired_yaw_rate(int16_t stick_angle);
void check_ekf_yaw_reset();
float get_roi_yaw();
float get_look_ahead_yaw();
float get_pilot_desired_climb_rate(float throttle_control);
float get_surface_tracking_climb_rate(int16_t target_rate, float current_alt_target, float dt);
void update_poscon_alt_max();
void rotate_body_frame_to_NE(float &x, float &y);
void send_heartbeat(mavlink_channel_t chan);
#if RPM_ENABLED == ENABLED
void rpm_update();
#endif
void Log_Write_Control_Tuning();
void Log_Write_Performance();
void Log_Write_Attitude();
void Log_Write_MotBatt();
void Log_Write_Event(Log_Event id);
void Log_Write_Data(uint8_t id, int32_t value);
void Log_Write_Data(uint8_t id, uint32_t value);
void Log_Write_Data(uint8_t id, int16_t value);
void Log_Write_Data(uint8_t id, uint16_t value);
void Log_Write_Data(uint8_t id, float value);
void Log_Sensor_Health();
void Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target);
void Log_Write_Vehicle_Startup_Messages();
void load_parameters(void);
void userhook_init();
void userhook_FastLoop();
void userhook_50Hz();
void userhook_MediumLoop();
void userhook_SlowLoop();
void userhook_SuperSlowLoop();
void update_home_from_EKF();
void set_home_to_current_location_inflight();
bool set_home_to_current_location(bool lock) WARN_IF_UNUSED;
bool set_home(const Location& loc, bool lock) WARN_IF_UNUSED;
bool far_from_EKF_origin(const Location& loc);
void exit_mission();
bool verify_loiter_unlimited();
bool verify_loiter_time();
bool verify_wait_delay();
bool verify_within_distance();
bool verify_yaw();
bool acro_init(void);
void acro_run();
void get_pilot_desired_angle_rates(int16_t roll_in, int16_t pitch_in, int16_t yaw_in, float &roll_out, float &pitch_out, float &yaw_out);
bool althold_init(void);
void althold_run();
// Handles attitude control for stabilize and althold modes
void handle_attitude();
bool auto_init(void);
void auto_run();
void auto_wp_start(const Vector3f& destination);
void auto_wp_start(const Location& dest_loc);
void auto_wp_run();
void auto_spline_run();
void auto_circle_movetoedge_start(const Location &circle_center, float radius_m);
void auto_circle_start();
void auto_circle_run();
void auto_nav_guided_start();
void auto_nav_guided_run();
bool auto_loiter_start();
void auto_loiter_run();
uint8_t get_default_auto_yaw_mode(bool rtl);
void set_auto_yaw_mode(uint8_t yaw_mode);
void set_auto_yaw_look_at_heading(float angle_deg, float turn_rate_dps, int8_t direction, uint8_t relative_angle);
void set_auto_yaw_roi(const Location &roi_location);
float get_auto_heading(void);
bool circle_init(void);
void circle_run();
bool guided_init(bool ignore_checks = false);
void guided_pos_control_start();
void guided_vel_control_start();
void guided_posvel_control_start();
void guided_angle_control_start();
bool guided_set_destination(const Vector3f& destination);
bool guided_set_destination(const Location& dest_loc);
void guided_set_velocity(const Vector3f& velocity);
bool guided_set_destination_posvel(const Vector3f& destination, const Vector3f& velocity);
void guided_set_angle(const Quaternion &q, float climb_rate_cms);
void guided_run();
void guided_pos_control_run();
void guided_vel_control_run();
void guided_posvel_control_run();
void guided_angle_control_run();
void guided_limit_clear();
void guided_limit_set(uint32_t timeout_ms, float alt_min_cm, float alt_max_cm, float horiz_max_cm);
void guided_limit_init_time_and_pos();
bool guided_limit_check();
bool poshold_init(void);
void poshold_run();
bool motordetect_init();
void motordetect_run();
bool stabilize_init(void);
void stabilize_run();
bool manual_init(void);
void manual_run();
void failsafe_sensors_check(void);
void failsafe_crash_check();
void failsafe_ekf_check(void);
void handle_battery_failsafe(const char* type_str, const int8_t action);
void failsafe_gcs_check();
void failsafe_pilot_input_check(void);
void set_neutral_controls(void);
void failsafe_terrain_check();
void failsafe_terrain_set_status(bool data_ok);
void failsafe_terrain_on_event();
void mainloop_failsafe_enable();
void mainloop_failsafe_disable();
void fence_check();
bool set_mode(control_mode_t mode, mode_reason_t reason);
void update_flight_mode();
void exit_mode(control_mode_t old_control_mode, control_mode_t new_control_mode);
bool mode_requires_GPS(control_mode_t mode);
bool mode_has_manual_throttle(control_mode_t mode);
bool mode_allows_arming(control_mode_t mode, bool arming_from_gcs);
void notify_flight_mode(control_mode_t mode);
void read_inertia();
void update_surface_and_bottom_detector();
void set_surfaced(bool at_surface);
void set_bottomed(bool at_bottom);
void motors_output();
Vector3f pv_location_to_vector(const Location& loc);
float pv_alt_above_origin(float alt_above_home_cm);
void init_rc_in();
void init_rc_out();
void enable_motor_output();
void init_joystick();
void transform_manual_control_to_rc_override(int16_t x, int16_t y, int16_t z, int16_t r, uint16_t buttons);
void handle_jsbutton_press(uint8_t button,bool shift=false,bool held=false);
void handle_jsbutton_release(uint8_t button, bool shift);
JSButton* get_button(uint8_t index);
void default_js_buttons(void);
void clear_input_hold();
void read_barometer(void);
void init_rangefinder(void);
void read_rangefinder(void);
bool rangefinder_alt_ok(void);
#if OPTFLOW == ENABLED
void init_optflow();
#endif
void terrain_update();
void terrain_logging();
bool terrain_use();
void init_ardupilot();
void startup_INS_ground();
bool position_ok();
bool ekf_position_ok();
bool optflow_position_ok();
bool should_log(uint32_t mask);
bool start_command(const AP_Mission::Mission_Command& cmd);
bool verify_command(const AP_Mission::Mission_Command& cmd);
bool verify_command_callback(const AP_Mission::Mission_Command& cmd);
bool do_guided(const AP_Mission::Mission_Command& cmd);
void do_nav_wp(const AP_Mission::Mission_Command& cmd);
void do_surface(const AP_Mission::Mission_Command& cmd);
void do_RTL(void);
void do_loiter_unlimited(const AP_Mission::Mission_Command& cmd);
void do_circle(const AP_Mission::Mission_Command& cmd);
void do_loiter_time(const AP_Mission::Mission_Command& cmd);
void do_spline_wp(const AP_Mission::Mission_Command& cmd);
#if NAV_GUIDED == ENABLED
void do_nav_guided_enable(const AP_Mission::Mission_Command& cmd);
void do_guided_limits(const AP_Mission::Mission_Command& cmd);
#endif
void do_nav_delay(const AP_Mission::Mission_Command& cmd);
void do_wait_delay(const AP_Mission::Mission_Command& cmd);
void do_within_distance(const AP_Mission::Mission_Command& cmd);
void do_yaw(const AP_Mission::Mission_Command& cmd);
void do_change_speed(const AP_Mission::Mission_Command& cmd);
void do_set_home(const AP_Mission::Mission_Command& cmd);
void do_roi(const AP_Mission::Mission_Command& cmd);
void do_mount_control(const AP_Mission::Mission_Command& cmd);
bool verify_nav_wp(const AP_Mission::Mission_Command& cmd);
bool verify_surface(const AP_Mission::Mission_Command& cmd);
bool verify_RTL(void);
bool verify_circle(const AP_Mission::Mission_Command& cmd);
bool verify_spline_wp(const AP_Mission::Mission_Command& cmd);
#if NAV_GUIDED == ENABLED
bool verify_nav_guided_enable(const AP_Mission::Mission_Command& cmd);
#endif
bool verify_nav_delay(const AP_Mission::Mission_Command& cmd);
void auto_spline_start(const Location& destination, bool stopped_at_start, AC_WPNav::spline_segment_end_type seg_end_type, const Location& next_destination);
void log_init(void);
void accel_cal_update(void);
void failsafe_leak_check();
void failsafe_internal_pressure_check();
void failsafe_internal_temperature_check();
void failsafe_terrain_act(void);
bool auto_terrain_recover_start(void);
void auto_terrain_recover_run(void);
void translate_wpnav_rp(float &lateral_out, float &forward_out);
void translate_circle_nav_rp(float &lateral_out, float &forward_out);
void translate_pos_control_rp(float &lateral_out, float &forward_out);
bool surface_init(void);
void surface_run();
uint16_t get_pilot_speed_dn();
void convert_old_parameters(void);
bool handle_do_motor_test(mavlink_command_long_t command);
bool init_motor_test();
bool verify_motor_test();
uint32_t last_do_motor_test_fail_ms = 0;
uint32_t last_do_motor_test_ms = 0;
bool control_check_barometer();
enum Failsafe_Action {
Failsafe_Action_None = 0,
Failsafe_Action_Warn = 1,
Failsafe_Action_Disarm = 2,
Failsafe_Action_Surface = 3
};
static constexpr int8_t _failsafe_priorities[] = {
Failsafe_Action_Disarm,
Failsafe_Action_Surface,
Failsafe_Action_Warn,
Failsafe_Action_None,
-1 // the priority list must end with a sentinel of -1
};
static_assert(_failsafe_priorities[ARRAY_SIZE(_failsafe_priorities) - 1] == -1,
"_failsafe_priorities is missing the sentinel");
public:
void mavlink_delay_cb();
void mainloop_failsafe_check();
//------------selfdefine START-----------------------------
control_mode_t control_mode;
mode_reason_t control_mode_reason = MODE_REASON_UNKNOWN;
control_mode_t prev_control_mode;
mode_reason_t prev_control_mode_reason = MODE_REASON_UNKNOWN;
TrackPidClass trackpid;//履带pid控制对象
//------ATOM ------------
float GyroX;//roll角速度
float GyroY;//pitch角速度
float GyroZ;//yaw角速度
float Roll;//roll角度
float Pitch;//pitch角度
float Yaw;//yaw角度
//
uint8_t agl_sec;//机器人俯仰所处于的角度区间
uint8_t agl_act;//机器人当前的姿态动作 水平 or 竖直
//----ATOM---------
unsigned char ucRxBufferATOM[256];//原子九轴接收缓冲区
unsigned char SaberCommandRes[24];//原子配置数据
unsigned char ucRxCnt_atom ;//原子数据接收个数
bool usart_state_atom;//原子九轴通信状态
void updat_Atom(void);//原子九轴数据更新
void GetAngle(void);//计算角度
void uart2_read_Atom(AP_HAL::UARTDriver *uart);//USART2即是temlem2 读取 atom接在temlem2上
void Atom_config(AP_HAL::UARTDriver *uart);//配置
unsigned char Atom_BBC(unsigned char *addr,uint16_t len);//异或校验
float char_to_float(unsigned char u1,unsigned char u2,unsigned char u3,unsigned char u4);
void direction0_90(void);
//------九轴读到的数----------------------
float Roll_Raian;//roll角度弧度
float Pitch_Raian;//pitch角度弧度
float Yaw_Raian;//yaw角度弧度
float Yaw_Angle;//yaw角度,纠正了安装角度
uTof data_floatfromchar;
AP_Motors6DOF motors;
AP_Arming_Sub arming;
AP_Baro barometer;
//灯光
int16_t lights;
//---------USBL ---------------
uint8_t usblpoweroff;
void USBL_PowerSwitch(void);
//-------------------
int16_t yaw_press;//yaw角度给定
void getyaw(void);
void getgain(void);
//---------track----------------
uint8_t clean_thruster_help;
int16_t brushleft;//左毛刷
int16_t brushright;//右毛刷
int16_t motor1_speed_target;//履带电机1 目标PWM
int16_t motor2_speed_target;//履带电机2 目标PWM
float turn_angle;
float track_head_gd;//履带的方位角度给定
uint8_t prepare_state;//水平或者竖直命令
int16_t min_depth;// 最小深度
int16_t max_depth;//最大深度
int16_t autoclean_orgin;//自动洗网开始时,机器人的深度
uint8_t autoclean_step;//自动洗网的阶段:开始 、向上、向下
bool autoclean_flag;//自动洗网状态
bool autoclean_command;//自动洗网状态
bool handclean;
uint8_t clean_mode;
bool clean_bottom_flag;//清洗底网
bool clean_bottom_command;
uint8_t track_motor_arm;//测试履带时的前进2 后退0 停1
PressNetLevel PressLevel;//压力分级枚举类型
float PressLevel_f;//压力分级float类型
int16_t pitch_input_inc;//pitch给定
bool sport_init(void);
void sport_run();
bool clean_init(void);
void clean_run();
void track_reset(void);
void autoclean_flag_chose(void);
void clean_net_joystick(void);
void clean_sidenet_auto(void);
void slowly_speed1(int16_t &p1, int16_t p2,int16_t step,int16_t per) ;
void slowly_speed2(int16_t &p1, int16_t p2,int16_t step,int16_t per) ;
float Constrate1(float d1);
void motor_toCan(void);
void clean_sidenet_state(void);
void clean_sidenet_run(void);
void track_pidcontrol(float _targethead,int16_t &_motor1,int16_t &_motor2);
float get_yaw_error(float yaw_heading);
};
extern const AP_HAL::HAL& hal;
extern Sub sub;