/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include #include "AP_Proximity_SITL.h" #include extern const AP_HAL::HAL& hal; #define PROXIMITY_MAX_RANGE 200.0f #define PROXIMITY_ACCURACY 0.1f /* The constructor also initialises the proximity sensor. */ AP_Proximity_SITL::AP_Proximity_SITL(AP_Proximity &_frontend, AP_Proximity::Proximity_State &_state): AP_Proximity_Backend(_frontend, _state), sitl(AP::sitl()) { ap_var_type ptype; fence_count = (AP_Int8 *)AP_Param::find("FENCE_TOTAL", &ptype); if (fence_count == nullptr || ptype != AP_PARAM_INT8) { AP_HAL::panic("Proximity_SITL: Failed to find FENCE_TOTAL"); } fence_alt_max = (AP_Float *)AP_Param::find("FENCE_ALT_MAX", &ptype); if (fence_alt_max == nullptr || ptype != AP_PARAM_FLOAT) { AP_HAL::panic("Proximity_SITL: Failed to find FENCE_ALT_MAX"); } } // update the state of the sensor void AP_Proximity_SITL::update(void) { load_fence(); current_loc.lat = sitl->state.latitude * 1.0e7; current_loc.lng = sitl->state.longitude * 1.0e7; current_loc.alt = sitl->state.altitude * 1.0e2; if (fence && fence_loader.boundary_valid(fence_count->get(), fence)) { // update distance in one sector if (get_distance_to_fence(_sector_middle_deg[last_sector], _distance[last_sector])) { set_status(AP_Proximity::Proximity_Good); _distance_valid[last_sector] = true; _angle[last_sector] = _sector_middle_deg[last_sector]; update_boundary_for_sector(last_sector, true); } else { _distance_valid[last_sector] = false; } last_sector++; if (last_sector >= _num_sectors) { last_sector = 0; } } else { set_status(AP_Proximity::Proximity_NoData); } } void AP_Proximity_SITL::load_fence(void) { uint32_t now = AP_HAL::millis(); if (now - last_load_ms < 1000) { return; } last_load_ms = now; if (fence == nullptr) { fence = (Vector2l *)fence_loader.create_point_array(sizeof(Vector2l)); } if (fence == nullptr) { return; } for (uint8_t i=0; iget(); i++) { fence_loader.load_point_from_eeprom(i, fence[i]); } } // get distance in meters to fence in a particular direction in degrees (0 is forward, angles increase in the clockwise direction) bool AP_Proximity_SITL::get_distance_to_fence(float angle_deg, float &distance) const { if (!fence_loader.boundary_valid(fence_count->get(), fence)) { return false; } // convert to earth frame angle_deg = wrap_360(sitl->state.yawDeg + angle_deg); /* simple bisection search to find distance. Not really efficient, but we can afford the CPU in SITL */ float min_dist = 0, max_dist = PROXIMITY_MAX_RANGE; while (max_dist - min_dist > PROXIMITY_ACCURACY) { float test_dist = (max_dist+min_dist)*0.5f; Location loc = current_loc; loc.offset_bearing(angle_deg, test_dist); Vector2l vecloc(loc.lat, loc.lng); if (fence_loader.boundary_breached(vecloc, fence_count->get(), fence)) { max_dist = test_dist; } else { min_dist = test_dist; } } distance = min_dist; return true; } // get maximum and minimum distances (in meters) of primary sensor float AP_Proximity_SITL::distance_max() const { return PROXIMITY_MAX_RANGE; } float AP_Proximity_SITL::distance_min() const { return 0.0f; } // get distance upwards in meters. returns true on success bool AP_Proximity_SITL::get_upward_distance(float &distance) const { // return distance to fence altitude distance = MAX(0.0f, fence_alt_max->get() - sitl->height_agl); return true; } #endif // CONFIG_HAL_BOARD