%% Set initial conditions clear all; load('fltTest.mat'); startDelayTime = 100; % number of seconds to delay filter start (used to simulate in-flight restart) dt = 1/50; startTime = 0.001*(IMU(1,2)); stopTime = 0.001*(IMU(length(IMU),2)); indexLimit = length(IMU); magIndexlimit = length(MAG); statesLog = zeros(11,indexLimit); eulLog = zeros(4,indexLimit); velInnovLog = zeros(4,indexLimit); angErrLog = velInnovLog; decInnovLog = zeros(2,magIndexlimit); velInnovVarLog = velInnovLog; decInnovVarLog = decInnovLog; % initialise the filter to level quat = [1;0;0;0]; states = zeros(10,1); Tbn = Quat2Tbn(quat); % Set the expected declination measDec = 0.18; % define the state covariances with the exception of the quaternion covariances Sigma_velNED = 0.5; % 1 sigma uncertainty in horizontal velocity components Sigma_dAngBias = 5*pi/180*dt; % 1 Sigma uncertainty in delta angle bias Sigma_quatErr = 1; % 1 Sigma uncertainty in angular misalignment (rad) covariance = single(diag([Sigma_quatErr*[1;1;1;1];Sigma_velNED*[1;1;1];Sigma_dAngBias*[1;1;1]].^2)); %% Main Loop magIndex = 1; time = 0; tiltError = 0; headingAligned = 0; angErrVec = [0;0;0]; startIndex = max(11,ceil(startDelayTime/dt)); for index = startIndex:indexLimit time=time+dt + startIndex*dt; % read IMU measurements and correct rates using estimated bias angRate = IMU(index,3:5)' - states(7:9)./dt; accel = IMU(index,6:8)'; % predict states [quat, states, Tbn, delAng, delVel] = PredictStates(quat,states,angRate,accel,dt); statesLog(1,index) = time; statesLog(2:11,index) = states; eulLog(1,index) = time; eulLog(2:4,index) = QuatToEul(quat); % predict covariance matrix covariance = PredictCovariance(delAng,delVel,quat,states,covariance,dt); % read magnetometer measurements while ((MAG(magIndex,1) < IMU(index,1)) && (magIndex < magIndexlimit)) magIndex = magIndex + 1; % fuse magnetometer measurements if new data available and when tilt has settled if ((MAG(magIndex,1) >= IMU(index,1)) && ((angErrVec(1)^2 + angErrVec(2)^2) < 0.05^2) && (index > 50)) magBody = 0.001*MAG(magIndex,3:5)'; [states,covariance,decInnov,decInnovVar] = FuseMagnetometer(states,covariance,magBody,measDec,Tbn); decInnovLog(1,magIndex) = time; decInnovLog(2,magIndex) = decInnov; decInnovVarLog(1,magIndex) = time; decInnovVarLog(2,magIndex) = decInnovVar; end end % fuse velocity measurements - use synthetic measurements measVel = [0;0;0]; [states,covariance,velInnov,velInnovVar] = FuseVelocity(states,covariance,measVel); velInnovLog(1,index) = time; velInnovLog(2:4,index) = velInnov; velInnovVarLog(1,index) = time; velInnovVarLog(2:4,index) = velInnovVar; end %% Generate Plots PlotData;