/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include "AP_MotorsHeli_Dual.h" #include extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_MotorsHeli_Dual::var_info[] = { AP_NESTEDGROUPINFO(AP_MotorsHeli, 0), // Indices 1-6 were used by servo position params and should not be used // Indices 7-8 were used by phase angle params and should not be used // @Param: DUAL_MODE // @DisplayName: Dual Mode // @Description: Sets the dual mode of the heli, either as tandem or as transverse. // @Values: 0:Longitudinal, 1:Transverse // @User: Standard AP_GROUPINFO("DUAL_MODE", 9, AP_MotorsHeli_Dual, _dual_mode, AP_MOTORS_HELI_DUAL_MODE_TANDEM), // @Param: DCP_SCALER // @DisplayName: Differential-Collective-Pitch Scaler // @Description: Scaling factor applied to the differential-collective-pitch // @Range: 0 1 // @User: Standard AP_GROUPINFO("DCP_SCALER", 10, AP_MotorsHeli_Dual, _dcp_scaler, AP_MOTORS_HELI_DUAL_DCP_SCALER), // @Param: DCP_YAW // @DisplayName: Differential-Collective-Pitch Yaw Mixing // @Description: Feed-forward compensation to automatically add yaw input when differential collective pitch is applied. // @Range: -10 10 // @Increment: 0.1 AP_GROUPINFO("DCP_YAW", 11, AP_MotorsHeli_Dual, _dcp_yaw_effect, 0), // @Param: YAW_SCALER // @DisplayName: Scaler for yaw mixing // @Description: Scaler for mixing yaw into roll or pitch. // @Range: -10 10 // @Increment: 0.1 AP_GROUPINFO("YAW_SCALER", 12, AP_MotorsHeli_Dual, _yaw_scaler, 1.0f), // Indices 13-15 were used by RSC_PWM_MIN, RSC_PWM_MAX and RSC_PWM_REV and should not be used // @Param: COL2_MIN // @DisplayName: Collective Pitch Minimum for rear swashplate // @Description: Lowest possible servo position in PWM microseconds for the rear swashplate // @Range: 1000 2000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("COL2_MIN", 16, AP_MotorsHeli_Dual, _collective2_min, AP_MOTORS_HELI_DUAL_COLLECTIVE2_MIN), // @Param: COL2_MAX // @DisplayName: Collective Pitch Maximum for rear swashplate // @Description: Highest possible servo position in PWM microseconds for the rear swashplate // @Range: 1000 2000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("COL2_MAX", 17, AP_MotorsHeli_Dual, _collective2_max, AP_MOTORS_HELI_DUAL_COLLECTIVE2_MAX), // @Param: COL2_MID // @DisplayName: Collective Pitch Mid-Point for rear swashplate // @Description: Swash servo position in PWM microseconds corresponding to zero collective pitch for the rear swashplate (or zero lift for Asymmetrical blades) // @Range: 1000 2000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("COL2_MID", 18, AP_MotorsHeli_Dual, _collective2_mid, AP_MOTORS_HELI_DUAL_COLLECTIVE2_MID), // Indice 19 was used by COL_CTRL_DIR and should not be used // @Group: SW1_H3_ // @Path: AP_MotorsHeli_Swash.cpp AP_SUBGROUPINFO(_swashplate1, "SW1_", 20, AP_MotorsHeli_Dual, AP_MotorsHeli_Swash), // @Group: SW2_H3_ // @Path: AP_MotorsHeli_Swash.cpp AP_SUBGROUPINFO(_swashplate2, "SW2_", 21, AP_MotorsHeli_Dual, AP_MotorsHeli_Swash), AP_GROUPEND }; // set update rate to motors - a value in hertz void AP_MotorsHeli_Dual::set_update_rate( uint16_t speed_hz ) { // record requested speed _speed_hz = speed_hz; // setup fast channels uint16_t mask = 0; for (uint8_t i=0; i= _collective_max ) { _collective_min = AP_MOTORS_HELI_COLLECTIVE_MIN; _collective_max = AP_MOTORS_HELI_COLLECTIVE_MAX; } // range check collective min, max and mid for rear swashplate if( _collective2_min >= _collective2_max ) { _collective2_min = AP_MOTORS_HELI_DUAL_COLLECTIVE2_MIN; _collective2_max = AP_MOTORS_HELI_DUAL_COLLECTIVE2_MAX; } _collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max); _collective2_mid = constrain_int16(_collective2_mid, _collective2_min, _collective2_max); // calculate collective mid point as a number from 0 to 1000 _collective_mid_pct = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min)); _collective2_mid_pct = ((float)(_collective2_mid-_collective2_min))/((float)(_collective2_max-_collective2_min)); // configure swashplate 1 and update scalars _swashplate1.configure(); _swashplate1.calculate_roll_pitch_collective_factors(); // configure swashplate 2 and update scalars _swashplate2.configure(); _swashplate2.calculate_roll_pitch_collective_factors(); // set mode of main rotor controller and trigger recalculation of scalars _main_rotor.set_control_mode(static_cast(_main_rotor._rsc_mode.get())); calculate_armed_scalars(); } // get_swashplate - calculate movement of each swashplate based on configuration float AP_MotorsHeli_Dual::get_swashplate (int8_t swash_num, int8_t swash_axis, float pitch_input, float roll_input, float yaw_input, float coll_input) { float swash_tilt = 0.0f; if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) { // roll tilt if (swash_axis == AP_MOTORS_HELI_DUAL_SWASH_AXIS_ROLL) { if (swash_num == 1) { swash_tilt = 0.0f; } else if (swash_num == 2) { swash_tilt = 0.0f; } } else if (swash_axis == AP_MOTORS_HELI_DUAL_SWASH_AXIS_PITCH) { // pitch tilt if (swash_num == 1) { swash_tilt = pitch_input - _yaw_scaler * yaw_input; } else if (swash_num == 2) { swash_tilt = pitch_input + _yaw_scaler * yaw_input; } } else if (swash_axis == AP_MOTORS_HELI_DUAL_SWASH_AXIS_COLL) { // collective if (swash_num == 1) { swash_tilt = 0.45f * _dcp_scaler * roll_input + coll_input; } else if (swash_num == 2) { swash_tilt = -0.45f * _dcp_scaler * roll_input + coll_input; } } } else { // AP_MOTORS_HELI_DUAL_MODE_TANDEM // roll tilt if (swash_axis == AP_MOTORS_HELI_DUAL_SWASH_AXIS_ROLL) { if (swash_num == 1) { swash_tilt = roll_input + _yaw_scaler * yaw_input; } else if (swash_num == 2) { swash_tilt = roll_input - _yaw_scaler * yaw_input; } } else if (swash_axis == AP_MOTORS_HELI_DUAL_SWASH_AXIS_PITCH) { // pitch tilt if (swash_num == 1) { swash_tilt = 0.0f; } else if (swash_num == 2) { swash_tilt = 0.0f; } } else if (swash_axis == AP_MOTORS_HELI_DUAL_SWASH_AXIS_COLL) { // collective if (swash_num == 1) { swash_tilt = 0.45f * _dcp_scaler * pitch_input + coll_input; } else if (swash_num == 2) { swash_tilt = -0.45f * _dcp_scaler * pitch_input + coll_input; } } } return swash_tilt; } // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint16_t AP_MotorsHeli_Dual::get_motor_mask() { // dual heli uses channels 1,2,3,4,5,6 and 8 uint16_t mask = 0; for (uint8_t i=0; i _cyclic_max/4500.0f) { pitch_out = _cyclic_max/4500.0f; limit.pitch = true; } } else { if (roll_out < -_cyclic_max/4500.0f) { roll_out = -_cyclic_max/4500.0f; limit.roll = true; } if (roll_out > _cyclic_max/4500.0f) { roll_out = _cyclic_max/4500.0f; limit.roll = true; } } if (_heliflags.inverted_flight) { collective_in = 1 - collective_in; } float yaw_compensation = 0.0f; // if servo output not in manual mode, process pre-compensation factors if (_servo_mode == SERVO_CONTROL_MODE_AUTOMATED) { // add differential collective pitch yaw compensation if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) { yaw_compensation = _dcp_yaw_effect * roll_out; } else { // AP_MOTORS_HELI_DUAL_MODE_TANDEM yaw_compensation = _dcp_yaw_effect * pitch_out; } yaw_out = yaw_out + yaw_compensation; } // scale yaw and update limits if (yaw_out < -_cyclic_max/4500.0f) { yaw_out = -_cyclic_max/4500.0f; limit.yaw = true; } if (yaw_out > _cyclic_max/4500.0f) { yaw_out = _cyclic_max/4500.0f; limit.yaw = true; } // constrain collective input float collective_out = collective_in; if (collective_out <= 0.0f) { collective_out = 0.0f; limit.throttle_lower = true; } if (collective_out >= 1.0f) { collective_out = 1.0f; limit.throttle_upper = true; } // ensure not below landed/landing collective if (_heliflags.landing_collective && collective_out < _collective_mid_pct) { collective_out = _collective_mid_pct; limit.throttle_lower = true; } // Set rear collective to midpoint if required float collective2_out = collective_out; if (_servo_mode == SERVO_CONTROL_MODE_MANUAL_CENTER) { collective2_out = _collective2_mid_pct; } // scale collective pitch for front swashplate (servos 1,2,3) float collective_scaler = ((float)(_collective_max-_collective_min))*0.001f; float collective_out_scaled = collective_out * collective_scaler + (_collective_min - 1000)*0.001f; // scale collective pitch for rear swashplate (servos 4,5,6) float collective2_scaler = ((float)(_collective2_max-_collective2_min))*0.001f; float collective2_out_scaled = collective2_out * collective2_scaler + (_collective2_min - 1000)*0.001f; // feed power estimate into main rotor controller // ToDo: add main rotor cyclic power? _main_rotor.set_collective(fabsf(collective_out)); // compute swashplate tilt float swash1_pitch = get_swashplate(1, AP_MOTORS_HELI_DUAL_SWASH_AXIS_PITCH, pitch_out, roll_out, yaw_out, collective_out_scaled); float swash1_roll = get_swashplate(1, AP_MOTORS_HELI_DUAL_SWASH_AXIS_ROLL, pitch_out, roll_out, yaw_out, collective_out_scaled); float swash1_coll = get_swashplate(1, AP_MOTORS_HELI_DUAL_SWASH_AXIS_COLL, pitch_out, roll_out, yaw_out, collective_out_scaled); float swash2_pitch = get_swashplate(2, AP_MOTORS_HELI_DUAL_SWASH_AXIS_PITCH, pitch_out, roll_out, yaw_out, collective2_out_scaled); float swash2_roll = get_swashplate(2, AP_MOTORS_HELI_DUAL_SWASH_AXIS_ROLL, pitch_out, roll_out, yaw_out, collective2_out_scaled); float swash2_coll = get_swashplate(2, AP_MOTORS_HELI_DUAL_SWASH_AXIS_COLL, pitch_out, roll_out, yaw_out, collective2_out_scaled); // get servo positions from swashplate library _servo_out[CH_1] = _swashplate1.get_servo_out(CH_1,swash1_pitch,swash1_roll,swash1_coll); _servo_out[CH_2] = _swashplate1.get_servo_out(CH_2,swash1_pitch,swash1_roll,swash1_coll); _servo_out[CH_3] = _swashplate1.get_servo_out(CH_3,swash1_pitch,swash1_roll,swash1_coll); if (_swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_45) { _servo_out[CH_7] = _swashplate1.get_servo_out(CH_4,swash1_pitch,swash1_roll,swash1_coll); } // get servo positions from swashplate library _servo_out[CH_4] = _swashplate2.get_servo_out(CH_1,swash2_pitch,swash2_roll,swash2_coll); _servo_out[CH_5] = _swashplate2.get_servo_out(CH_2,swash2_pitch,swash2_roll,swash2_coll); _servo_out[CH_6] = _swashplate2.get_servo_out(CH_3,swash2_pitch,swash2_roll,swash2_coll); if (_swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_45) { _servo_out[CH_8] = _swashplate2.get_servo_out(CH_4,swash2_pitch,swash2_roll,swash2_coll); } } void AP_MotorsHeli_Dual::output_to_motors() { if (!_flags.initialised_ok) { return; } // actually move the servos. PWM is sent based on nominal 1500 center. servo output shifts center based on trim value. for (uint8_t i=0; i= 0.0f && _servo_test_cycle_time < 0.5f)|| // Tilt swash back (_servo_test_cycle_time >= 6.0f && _servo_test_cycle_time < 6.5f)){ _pitch_test += (1.0f / (_loop_rate/2)); _oscillate_angle += 8 * M_PI / _loop_rate; } else if ((_servo_test_cycle_time >= 0.5f && _servo_test_cycle_time < 4.5f)|| // Roll swash around (_servo_test_cycle_time >= 6.5f && _servo_test_cycle_time < 10.5f)){ _oscillate_angle += M_PI / (2 * _loop_rate); _roll_test = sinf(_oscillate_angle); _pitch_test = cosf(_oscillate_angle); } else if ((_servo_test_cycle_time >= 4.5f && _servo_test_cycle_time < 5.0f)|| // Return swash to level (_servo_test_cycle_time >= 10.5f && _servo_test_cycle_time < 11.0f)){ _pitch_test -= (1.0f / (_loop_rate/2)); _oscillate_angle += 8 * M_PI / _loop_rate; } else if (_servo_test_cycle_time >= 5.0f && _servo_test_cycle_time < 6.0f){ // Raise swash to top _collective_test += (1.0f / _loop_rate); _oscillate_angle += 2 * M_PI / _loop_rate; } else if (_servo_test_cycle_time >= 11.0f && _servo_test_cycle_time < 12.0f){ // Lower swash to bottom _collective_test -= (1.0f / _loop_rate); _oscillate_angle += 2 * M_PI / _loop_rate; } else { // reset cycle _servo_test_cycle_time = 0.0f; _oscillate_angle = 0.0f; _collective_test = 0.0f; _roll_test = 0.0f; _pitch_test = 0.0f; // decrement servo test cycle counter at the end of the cycle if (_servo_test_cycle_counter > 0){ _servo_test_cycle_counter--; } } // over-ride servo commands to move servos through defined ranges _throttle_filter.reset(constrain_float(_collective_test, 0.0f, 1.0f)); _roll_in = constrain_float(_roll_test, -1.0f, 1.0f); _pitch_in = constrain_float(_pitch_test, -1.0f, 1.0f); } // parameter_check - check if helicopter specific parameters are sensible bool AP_MotorsHeli_Dual::parameter_check(bool display_msg) const { // returns false if Phase Angle is outside of range for H3 swashplate 1 if (_swashplate1.get_swash_type() == SWASHPLATE_TYPE_H3 && (_swashplate1.get_phase_angle() > 30 || _swashplate1.get_phase_angle() < -30)){ if (display_msg) { gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: H_SW1_H3_PHANG out of range"); } return false; } // returns false if Phase Angle is outside of range for H3 swashplate 2 if (_swashplate2.get_swash_type() == SWASHPLATE_TYPE_H3 && (_swashplate2.get_phase_angle() > 30 || _swashplate2.get_phase_angle() < -30)){ if (display_msg) { gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: H_SW2_H3_PHANG out of range"); } return false; } // check parent class parameters return AP_MotorsHeli::parameter_check(display_msg); }