/* Common GCS MAVLink functions for all vehicle types This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "GCS.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if HAL_RCINPUT_WITH_AP_RADIO #include #include #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include #endif #if HAL_WITH_UAVCAN #include #include // To be replaced with macro saying if KDECAN library is included #if APM_BUILD_TYPE(APM_BUILD_ArduCopter) || APM_BUILD_TYPE(APM_BUILD_ArduPlane) || APM_BUILD_TYPE(APM_BUILD_ArduSub) #include #endif #include #endif #include #include #include #include "../../ArduSub/Sub.h" extern const AP_HAL::HAL& hal; uint32_t GCS_MAVLINK::last_radio_status_remrssi_ms; uint8_t GCS_MAVLINK::mavlink_active = 0; uint8_t GCS_MAVLINK::chan_is_streaming = 0; uint32_t GCS_MAVLINK::reserve_param_space_start_ms; // private channels are ones used for point-to-point protocols, and // don't get broadcasts or fwded packets uint8_t GCS_MAVLINK::mavlink_private = 0; GCS *GCS::_singleton = nullptr; GCS_MAVLINK::GCS_MAVLINK(GCS_MAVLINK_Parameters ¶meters, AP_HAL::UARTDriver &uart) { _port = &uart; streamRates = parameters.streamRates; } bool GCS_MAVLINK::init(uint8_t instance) { // search for serial port const AP_SerialManager& serial_manager = AP::serialmanager(); const AP_SerialManager::SerialProtocol protocol = AP_SerialManager::SerialProtocol_MAVLink; // get associated mavlink channel if (!serial_manager.get_mavlink_channel(protocol, instance, chan)) { // return immediately in unlikely case mavlink channel cannot be found return false; } // and init the gcs instance if (!valid_channel(chan)) { return false; } /* Now try to cope with SiK radios that may be stuck in bootloader mode because CTS was held while powering on. This tells the bootloader to wait for a firmware. It affects any SiK radio with CTS connected that is externally powered. To cope we send 0x30 0x20 at 115200 on startup, which tells the bootloader to reset and boot normally */ _port->begin(115200); AP_HAL::UARTDriver::flow_control old_flow_control = _port->get_flow_control(); _port->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE); for (uint8_t i=0; i<3; i++) { hal.scheduler->delay(1); _port->write(0x30); _port->write(0x20); } // since tcdrain() and TCSADRAIN may not be implemented... hal.scheduler->delay(1); _port->set_flow_control(old_flow_control); // now change back to desired baudrate _port->begin(serial_manager.find_baudrate(protocol, instance)); mavlink_comm_port[chan] = _port; // create performance counters snprintf(_perf_packet_name, sizeof(_perf_packet_name), "GCS_Packet_%u", chan); _perf_packet = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, _perf_packet_name); snprintf(_perf_update_name, sizeof(_perf_update_name), "GCS_Update_%u", chan); _perf_update = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, _perf_update_name); AP_SerialManager::SerialProtocol mavlink_protocol = serial_manager.get_mavlink_protocol(chan); mavlink_status_t *status = mavlink_get_channel_status(chan); if (status == nullptr) { return false; } if (mavlink_protocol == AP_SerialManager::SerialProtocol_MAVLink2) { // load signing key load_signing_key(); if (status->signing == nullptr) { // if signing is off start by sending MAVLink1. status->flags |= MAVLINK_STATUS_FLAG_OUT_MAVLINK1; } } else if (status) { // user has asked to only send MAVLink1 status->flags |= MAVLINK_STATUS_FLAG_OUT_MAVLINK1; } if (chan == MAVLINK_COMM_0) { // Always start with MAVLink1 on first port for now, to allow for recovery // after experiments with MAVLink2 status->flags |= MAVLINK_STATUS_FLAG_OUT_MAVLINK1; } return true; } void GCS_MAVLINK::send_meminfo(void) { unsigned __brkval = 0; uint32_t memory = hal.util->available_memory(); mavlink_msg_meminfo_send(chan, __brkval, MIN(memory, 0xFFFFU), memory); } // report power supply status void GCS_MAVLINK::send_power_status(void) { if (!gcs().vehicle_initialised()) { // avoid unnecessary errors being reported to user return; } mavlink_msg_power_status_send(chan, hal.analogin->board_voltage() * 1000, hal.analogin->servorail_voltage() * 1000, hal.analogin->power_status_flags()); } void GCS_MAVLINK::send_battery_status(const uint8_t instance) const { // catch the battery backend not supporting the required number of cells static_assert(sizeof(AP_BattMonitor::cells) >= (sizeof(uint16_t) * MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_LEN), "Not enough battery cells for the MAVLink message"); const AP_BattMonitor &battery = AP::battery(); float temp; bool got_temperature = battery.get_temperature(temp, instance); // ensure we always send a voltage estimate to the GCS, because not all battery monitors monitor individual cells // as a work around for this we create a set of fake cells to be used if the backend doesn't provide direct monitoring // the GCS can then recover the pack voltage by summing all non ignored cell values. Because this is looped we can // report a pack up to 655.34 V with this method AP_BattMonitor::cells fake_cells; if (!battery.has_cell_voltages(instance)) { float voltage = battery.voltage(instance) * 1e3f; for (uint8_t i = 0; i < MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_LEN; i++) { if (voltage < 0.001f) { // too small to send to the GCS, set it to the no cell value fake_cells.cells[i] = UINT16_MAX; } else { fake_cells.cells[i] = MIN(voltage, 65534.0f); // Can't send more then UINT16_MAX - 1 in a cell voltage -= 65534.0f; } } } float current, consumed_mah, consumed_wh; if (battery.current_amps(current, instance)) { current *= 100; } else { current = -1; } if (!battery.consumed_mah(consumed_mah, instance)) { consumed_mah = -1; } if (battery.consumed_wh(consumed_wh, instance)) { consumed_wh *= 36; } else { consumed_wh = -1; } mavlink_msg_battery_status_send(chan, instance, // id MAV_BATTERY_FUNCTION_UNKNOWN, // function MAV_BATTERY_TYPE_UNKNOWN, // type got_temperature ? ((int16_t) (temp * 100)) : INT16_MAX, // temperature. INT16_MAX if unknown battery.has_cell_voltages(instance) ? battery.get_cell_voltages(instance).cells : fake_cells.cells, // cell voltages current, // current in centiampere consumed_mah, // total consumed current in milliampere.hour consumed_wh, // consumed energy in hJ (hecto-Joules) get_battery_remaining_percentage(instance), 0, // time remaining, seconds (not provided) MAV_BATTERY_CHARGE_STATE_UNDEFINED); } // returns true if all battery instances were reported bool GCS_MAVLINK::send_battery_status() const { const AP_BattMonitor &battery = AP::battery(); for(uint8_t i = 0; i < battery.num_instances(); i++) { if (battery.get_type(i) != AP_BattMonitor_Params::BattMonitor_Type::BattMonitor_TYPE_NONE) { CHECK_PAYLOAD_SIZE(BATTERY_STATUS); send_battery_status(i); } } return true; } void GCS_MAVLINK::send_distance_sensor(const AP_RangeFinder_Backend *sensor, const uint8_t instance) const { if (!sensor->has_data()) { return; } mavlink_msg_distance_sensor_send( chan, AP_HAL::millis(), // time since system boot TODO: take time of measurement sensor->min_distance_cm(), // minimum distance the sensor can measure in centimeters sensor->max_distance_cm(), // maximum distance the sensor can measure in centimeters sensor->distance_cm(), // current distance reading sensor->get_mav_distance_sensor_type(), // type from MAV_DISTANCE_SENSOR enum instance, // onboard ID of the sensor == instance sensor->orientation(), // direction the sensor faces from MAV_SENSOR_ORIENTATION enum 0, // Measurement covariance in centimeters, 0 for unknown / invalid readings 0, // horizontal FOV 0, // vertical FOV (const float *)nullptr); // quaternion of sensor orientation for MAV_SENSOR_ROTATION_CUSTOM } // send any and all distance_sensor messages. This starts by sending // any distance sensors not used by a Proximity sensor, then sends the // proximity sensor ones. void GCS_MAVLINK::send_distance_sensor() const { RangeFinder *rangefinder = RangeFinder::get_singleton(); if (rangefinder == nullptr) { return; } // if we have a proximity backend that utilizes rangefinders cull // sending them here, and allow the later proximity code to manage // them bool filter_possible_proximity_sensors = false; AP_Proximity *proximity = AP_Proximity::get_singleton(); if (proximity != nullptr) { for (uint8_t i = 0; i < proximity->num_sensors(); i++) { if (proximity->get_type(i) == AP_Proximity::Proximity_Type_RangeFinder) { filter_possible_proximity_sensors = true; } } } for (uint8_t i = 0; i < RANGEFINDER_MAX_INSTANCES; i++) { if (!HAVE_PAYLOAD_SPACE(chan, DISTANCE_SENSOR)) { return; } AP_RangeFinder_Backend *sensor = rangefinder->get_backend(i); if (sensor == nullptr) { continue; } enum Rotation orient = sensor->orientation(); if (!filter_possible_proximity_sensors || (orient > ROTATION_YAW_315 && orient != ROTATION_PITCH_90)) { send_distance_sensor(sensor, i); } } send_proximity(); } void GCS_MAVLINK::send_rangefinder() const { RangeFinder *rangefinder = RangeFinder::get_singleton(); if (rangefinder == nullptr) { return; } AP_RangeFinder_Backend *s = rangefinder->find_instance(ROTATION_PITCH_270); if (s == nullptr) { return; } mavlink_msg_rangefinder_send( chan, s->distance_cm() * 0.01f, s->voltage_mv() * 0.001f); } void GCS_MAVLINK::send_proximity() const { AP_Proximity *proximity = AP_Proximity::get_singleton(); if (proximity == nullptr || proximity->get_status() == AP_Proximity::Proximity_NotConnected) { return; // this is wrong, but pretend we sent data and don't requeue } const uint16_t dist_min = (uint16_t)(proximity->distance_min() * 100.0f); // minimum distance the sensor can measure in centimeters const uint16_t dist_max = (uint16_t)(proximity->distance_max() * 100.0f); // maximum distance the sensor can measure in centimeters // send horizontal distances AP_Proximity::Proximity_Distance_Array dist_array; if (proximity->get_horizontal_distances(dist_array)) { for (uint8_t i = 0; i < PROXIMITY_MAX_DIRECTION; i++) { if (!HAVE_PAYLOAD_SPACE(chan, DISTANCE_SENSOR)) { return; } mavlink_msg_distance_sensor_send( chan, AP_HAL::millis(), // time since system boot dist_min, // minimum distance the sensor can measure in centimeters dist_max, // maximum distance the sensor can measure in centimeters (uint16_t)(dist_array.distance[i] * 100.0f), // current distance reading MAV_DISTANCE_SENSOR_LASER, // type from MAV_DISTANCE_SENSOR enum PROXIMITY_SENSOR_ID_START + i, // onboard ID of the sensor dist_array.orientation[i], // direction the sensor faces from MAV_SENSOR_ORIENTATION enum 0, // Measurement covariance in centimeters, 0 for unknown / invalid readings 0, 0, nullptr); } } // send upward distance float dist_up; if (proximity->get_upward_distance(dist_up)) { if (!HAVE_PAYLOAD_SPACE(chan, DISTANCE_SENSOR)) { return; } mavlink_msg_distance_sensor_send( chan, AP_HAL::millis(), // time since system boot dist_min, // minimum distance the sensor can measure in centimeters dist_max, // maximum distance the sensor can measure in centimeters (uint16_t)(dist_up * 100.0f), // current distance reading MAV_DISTANCE_SENSOR_LASER, // type from MAV_DISTANCE_SENSOR enum PROXIMITY_SENSOR_ID_START + PROXIMITY_MAX_DIRECTION + 1, // onboard ID of the sensor MAV_SENSOR_ROTATION_PITCH_90, // direction upwards 0, // Measurement covariance in centimeters, 0 for unknown / invalid readings 0, 0, nullptr); } } // report AHRS2 state void GCS_MAVLINK::send_ahrs2() { #if AP_AHRS_NAVEKF_AVAILABLE const AP_AHRS &ahrs = AP::ahrs(); Vector3f euler; struct Location loc {}; if (ahrs.get_secondary_attitude(euler) || ahrs.get_secondary_position(loc)) { mavlink_msg_ahrs2_send(chan, euler.x, euler.y, euler.z, loc.alt*1.0e-2f, loc.lat, loc.lng); } #endif } void GCS_MAVLINK::send_ahrs3()//保留 { #if AP_AHRS_NAVEKF_AVAILABLE const NavEKF2 &ekf2 = AP::ahrs_navekf().get_NavEKF2_const(); if (ekf2.activeCores() > 0 && HAVE_PAYLOAD_SPACE(chan, AHRS3)) { struct Location loc {}; ekf2.getLLH(loc); Vector3f euler; ekf2.getEulerAngles(-1,euler); mavlink_msg_ahrs3_send(chan, euler.x, euler.y, euler.z, loc.alt*1.0e-2f, loc.lat, loc.lng, 0, 0, 0, 0); } #endif } MissionItemProtocol *GCS::get_prot_for_mission_type(const MAV_MISSION_TYPE mission_type) const { switch (mission_type) { case MAV_MISSION_TYPE_MISSION: return _missionitemprotocol_waypoints; case MAV_MISSION_TYPE_RALLY: return _missionitemprotocol_rally; default: return nullptr; } } // handle a request for the number of items we have stored for a mission type: void GCS_MAVLINK::handle_mission_request_list(const mavlink_message_t &msg) { // decode mavlink_mission_request_list_t packet; mavlink_msg_mission_request_list_decode(&msg, &packet); MissionItemProtocol *prot = gcs().get_prot_for_mission_type((MAV_MISSION_TYPE)packet.mission_type); if (prot == nullptr) { mavlink_msg_mission_ack_send(chan, msg.sysid, msg.compid, MAV_MISSION_UNSUPPORTED, packet.mission_type); return; } prot->handle_mission_request_list(*this, packet, msg); } /* handle a MISSION_REQUEST mavlink packet */ void GCS_MAVLINK::handle_mission_request_int(const mavlink_message_t &msg) { // decode mavlink_mission_request_int_t packet; mavlink_msg_mission_request_int_decode(&msg, &packet); MissionItemProtocol *prot = gcs().get_prot_for_mission_type((MAV_MISSION_TYPE)packet.mission_type); if (prot == nullptr) { return; } prot->handle_mission_request_int(*this, packet, msg); } void GCS_MAVLINK::handle_mission_request(const mavlink_message_t &msg) { // decode mavlink_mission_request_t packet; mavlink_msg_mission_request_decode(&msg, &packet); MissionItemProtocol *prot = gcs().get_prot_for_mission_type((MAV_MISSION_TYPE)packet.mission_type); if (prot == nullptr) { return; } prot->handle_mission_request(*this, packet, msg); } /* handle a MISSION_SET_CURRENT mavlink packet */ void GCS_MAVLINK::handle_mission_set_current(AP_Mission &mission, const mavlink_message_t &msg) { // decode mavlink_mission_set_current_t packet; mavlink_msg_mission_set_current_decode(&msg, &packet); // set current command if (mission.set_current_cmd(packet.seq)) { mavlink_msg_mission_current_send(chan, packet.seq); } } /* handle a MISSION_COUNT mavlink packet */ void GCS_MAVLINK::handle_mission_count(const mavlink_message_t &msg) { // decode mavlink_mission_count_t packet; mavlink_msg_mission_count_decode(&msg, &packet); MissionItemProtocol *prot = gcs().get_prot_for_mission_type((MAV_MISSION_TYPE)packet.mission_type); if (prot == nullptr) { mavlink_msg_mission_ack_send(chan, msg.sysid, msg.compid, MAV_MISSION_UNSUPPORTED, packet.mission_type); return; } prot->handle_mission_count(*this, packet, msg); } /* handle a MISSION_CLEAR_ALL mavlink packet */ void GCS_MAVLINK::handle_mission_clear_all(const mavlink_message_t &msg) { // decode mavlink_mission_clear_all_t packet; mavlink_msg_mission_clear_all_decode(&msg, &packet); const MAV_MISSION_TYPE mission_type = (MAV_MISSION_TYPE)packet.mission_type; MissionItemProtocol *prot = gcs().get_prot_for_mission_type(mission_type); if (prot == nullptr) { send_mission_ack(msg, mission_type, MAV_MISSION_UNSUPPORTED); return; } prot->handle_mission_clear_all(*this, msg); } bool GCS_MAVLINK::requesting_mission_items() const { for (uint8_t i=0; ireceiving && prot->active_link_is(this)) { return true; } } return false; } void GCS_MAVLINK::handle_mission_write_partial_list(const mavlink_message_t &msg) { // decode mavlink_mission_write_partial_list_t packet; mavlink_msg_mission_write_partial_list_decode(&msg, &packet); MissionItemProtocol *use_prot = gcs().get_prot_for_mission_type((MAV_MISSION_TYPE)packet.mission_type); if (use_prot == nullptr) { send_mission_ack(msg, (MAV_MISSION_TYPE)packet.mission_type, MAV_MISSION_UNSUPPORTED); return; } use_prot->handle_mission_write_partial_list(*this, msg, packet); } /* pass mavlink messages to the AP_Mount singleton */ void GCS_MAVLINK::handle_mount_message(const mavlink_message_t &msg) { AP_Mount *mount = AP::mount(); if (mount == nullptr) { return; } mount->handle_message(chan, msg); } /* pass parameter value messages through to mount library */ void GCS_MAVLINK::handle_param_value(const mavlink_message_t &msg) { AP_Mount *mount = AP::mount(); if (mount == nullptr) { return; } mount->handle_param_value(msg); } void GCS_MAVLINK::send_text(MAV_SEVERITY severity, const char *fmt, ...) const { char text[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1]; va_list arg_list; va_start(arg_list, fmt); hal.util->vsnprintf(text, sizeof(text), fmt, arg_list); va_end(arg_list); gcs().send_statustext(severity, (1< 95 && stream_slowdown_ms > 200) { // the buffer has plenty of space, speed up a lot stream_slowdown_ms -= 40; } else if (packet.txbuf > 90 && stream_slowdown_ms != 0) { // the buffer has enough space, speed up a bit stream_slowdown_ms -= 20; } #if GCS_DEBUG_SEND_MESSAGE_TIMINGS if (stream_slowdown_ms > max_slowdown_ms) { max_slowdown_ms = stream_slowdown_ms; } #endif //log rssi, noise, etc if logging Performance monitoring data if (log_radio) { AP::logger().Write_Radio(packet); } } /* handle an incoming mission item return true if this is the last mission item, otherwise false */ void GCS_MAVLINK::handle_mission_item(const mavlink_message_t &msg) { // TODO: rename packet to mission_item_int mavlink_mission_item_int_t packet; if (msg.msgid == MAVLINK_MSG_ID_MISSION_ITEM) { mavlink_mission_item_t mission_item; mavlink_msg_mission_item_decode(&msg, &mission_item); MAV_MISSION_RESULT ret = AP_Mission::convert_MISSION_ITEM_to_MISSION_ITEM_INT(mission_item, packet); if (ret != MAV_MISSION_ACCEPTED) { const MAV_MISSION_TYPE type = (MAV_MISSION_TYPE)packet.mission_type; send_mission_ack(msg, type, ret); return; } } else { mavlink_msg_mission_item_int_decode(&msg, &packet); } const uint8_t current = packet.current; const MAV_MISSION_TYPE type = (MAV_MISSION_TYPE)packet.mission_type; if (type == MAV_MISSION_TYPE_MISSION && (current == 2 || current == 3)) { struct AP_Mission::Mission_Command cmd = {}; MAV_MISSION_RESULT result = AP_Mission::mavlink_int_to_mission_cmd(packet, cmd); if (result != MAV_MISSION_ACCEPTED) { //decode failed send_mission_ack(msg, MAV_MISSION_TYPE_MISSION, result); return; } // guided or change-alt if (current == 2) { // current = 2 is a flag to tell us this is a "guided mode" // waypoint and not for the mission result = (handle_guided_request(cmd) ? MAV_MISSION_ACCEPTED : MAV_MISSION_ERROR) ; } else if (current == 3) { //current = 3 is a flag to tell us this is a alt change only // add home alt if needed handle_change_alt_request(cmd); // verify we recevied the command result = MAV_MISSION_ACCEPTED; } send_mission_ack(msg, MAV_MISSION_TYPE_MISSION, result); return; } // not a guided-mode reqest MissionItemProtocol *prot = gcs().get_prot_for_mission_type(type); if (prot == nullptr) { send_mission_ack(msg, type, MAV_MISSION_UNSUPPORTED); return; } if (!prot->receiving) { send_mission_ack(msg, type, MAV_MISSION_ERROR); return; } prot->handle_mission_item(msg, packet); } ap_message GCS_MAVLINK::mavlink_id_to_ap_message_id(const uint32_t mavlink_id) const { // MSG_NEXT_MISSION_REQUEST doesn't correspond to a mavlink message directly. // It is used to request the next waypoint after receiving one. // MSG_NEXT_PARAM doesn't correspond to a mavlink message directly. // It is used to send the next parameter in a stream after sending one // MSG_NAMED_FLOAT messages can't really be "streamed"... static const struct { uint32_t mavlink_id; ap_message msg_id; } map[] { { MAVLINK_MSG_ID_HEARTBEAT, MSG_HEARTBEAT}, { MAVLINK_MSG_ID_ATTITUDE, MSG_ATTITUDE}, { MAVLINK_MSG_ID_GLOBAL_POSITION_INT, MSG_LOCATION}, { MAVLINK_MSG_ID_HOME_POSITION, MSG_HOME}, { MAVLINK_MSG_ID_GPS_GLOBAL_ORIGIN, MSG_ORIGIN}, { MAVLINK_MSG_ID_SYS_STATUS, MSG_SYS_STATUS}, { MAVLINK_MSG_ID_POWER_STATUS, MSG_POWER_STATUS}, { MAVLINK_MSG_ID_MEMINFO, MSG_MEMINFO}, { MAVLINK_MSG_ID_NAV_CONTROLLER_OUTPUT, MSG_NAV_CONTROLLER_OUTPUT}, { MAVLINK_MSG_ID_MISSION_CURRENT, MSG_CURRENT_WAYPOINT}, { MAVLINK_MSG_ID_VFR_HUD, MSG_VFR_HUD}, { MAVLINK_MSG_ID_SERVO_OUTPUT_RAW, MSG_SERVO_OUTPUT_RAW}, { MAVLINK_MSG_ID_RC_CHANNELS, MSG_RC_CHANNELS}, { MAVLINK_MSG_ID_RC_CHANNELS_RAW, MSG_RC_CHANNELS_RAW}, { MAVLINK_MSG_ID_RAW_IMU, MSG_RAW_IMU}, { MAVLINK_MSG_ID_SCALED_IMU, MSG_SCALED_IMU}, { MAVLINK_MSG_ID_SCALED_IMU2, MSG_SCALED_IMU2}, { MAVLINK_MSG_ID_SCALED_IMU3, MSG_SCALED_IMU3}, { MAVLINK_MSG_ID_SCALED_PRESSURE, MSG_SCALED_PRESSURE}, { MAVLINK_MSG_ID_SCALED_PRESSURE2, MSG_SCALED_PRESSURE2}, { MAVLINK_MSG_ID_SCALED_PRESSURE3, MSG_SCALED_PRESSURE3}, { MAVLINK_MSG_ID_SENSOR_OFFSETS, MSG_SENSOR_OFFSETS}, { MAVLINK_MSG_ID_GPS_RAW_INT, MSG_GPS_RAW}, { MAVLINK_MSG_ID_GPS_RTK, MSG_GPS_RTK}, { MAVLINK_MSG_ID_GPS2_RAW, MSG_GPS2_RAW}, { MAVLINK_MSG_ID_GPS2_RTK, MSG_GPS2_RTK}, { MAVLINK_MSG_ID_SYSTEM_TIME, MSG_SYSTEM_TIME}, { MAVLINK_MSG_ID_RC_CHANNELS_SCALED, MSG_SERVO_OUT}, { MAVLINK_MSG_ID_PARAM_VALUE, MSG_NEXT_PARAM}, { MAVLINK_MSG_ID_FENCE_STATUS, MSG_FENCE_STATUS}, { MAVLINK_MSG_ID_AHRS, MSG_AHRS}, { MAVLINK_MSG_ID_SIMSTATE, MSG_SIMSTATE}, { MAVLINK_MSG_ID_AHRS2, MSG_AHRS2}, { MAVLINK_MSG_ID_AHRS3, MSG_AHRS3}, { MAVLINK_MSG_ID_HWSTATUS, MSG_HWSTATUS}, { MAVLINK_MSG_ID_WIND, MSG_WIND}, { MAVLINK_MSG_ID_RANGEFINDER, MSG_RANGEFINDER}, { MAVLINK_MSG_ID_DISTANCE_SENSOR, MSG_DISTANCE_SENSOR}, // request also does report: { MAVLINK_MSG_ID_TERRAIN_REQUEST, MSG_TERRAIN}, { MAVLINK_MSG_ID_BATTERY2, MSG_BATTERY2}, { MAVLINK_MSG_ID_CAMERA_FEEDBACK, MSG_CAMERA_FEEDBACK}, { MAVLINK_MSG_ID_MOUNT_STATUS, MSG_MOUNT_STATUS}, { MAVLINK_MSG_ID_OPTICAL_FLOW, MSG_OPTICAL_FLOW}, { MAVLINK_MSG_ID_GIMBAL_REPORT, MSG_GIMBAL_REPORT}, { MAVLINK_MSG_ID_MAG_CAL_PROGRESS, MSG_MAG_CAL_PROGRESS}, { MAVLINK_MSG_ID_MAG_CAL_REPORT, MSG_MAG_CAL_REPORT}, { MAVLINK_MSG_ID_EKF_STATUS_REPORT, MSG_EKF_STATUS_REPORT}, { MAVLINK_MSG_ID_LOCAL_POSITION_NED, MSG_LOCAL_POSITION}, { MAVLINK_MSG_ID_PID_TUNING, MSG_PID_TUNING}, { MAVLINK_MSG_ID_VIBRATION, MSG_VIBRATION}, { MAVLINK_MSG_ID_RPM, MSG_RPM}, { MAVLINK_MSG_ID_MISSION_ITEM_REACHED, MSG_MISSION_ITEM_REACHED}, { MAVLINK_MSG_ID_POSITION_TARGET_GLOBAL_INT, MSG_POSITION_TARGET_GLOBAL_INT}, { MAVLINK_MSG_ID_POSITION_TARGET_LOCAL_NED, MSG_POSITION_TARGET_LOCAL_NED}, { MAVLINK_MSG_ID_ADSB_VEHICLE, MSG_ADSB_VEHICLE}, { MAVLINK_MSG_ID_BATTERY_STATUS, MSG_BATTERY_STATUS}, { MAVLINK_MSG_ID_AOA_SSA, MSG_AOA_SSA}, { MAVLINK_MSG_ID_DEEPSTALL, MSG_LANDING}, { MAVLINK_MSG_ID_EXTENDED_SYS_STATE, MSG_EXTENDED_SYS_STATE}, { MAVLINK_MSG_ID_AUTOPILOT_VERSION, MSG_AUTOPILOT_VERSION}, }; for (uint8_t i=0; i 60000) { return 60000; } return interval_ms; } // typical runtime on fmuv3: 5 microseconds for 3 buckets void GCS_MAVLINK::find_next_bucket_to_send() { #if GCS_DEBUG_SEND_MESSAGE_TIMINGS void *data = hal.scheduler->disable_interrupts_save(); uint32_t start_us = AP_HAL::micros(); #endif const uint16_t now16_ms{AP_HAL::millis16()}; // all done sending this bucket... find another bucket... sending_bucket_id = no_bucket_to_send; uint16_t ms_before_send_next_bucket_to_send = UINT16_MAX; for (uint8_t i=0; i interval) { // should already have sent this bucket! ms_before_send_this_bucket = 0; } else { ms_before_send_this_bucket = interval - ms_since_last_sent; } if (ms_before_send_this_bucket < ms_before_send_next_bucket_to_send) { sending_bucket_id = i; ms_before_send_next_bucket_to_send = ms_before_send_this_bucket; } } if (sending_bucket_id != no_bucket_to_send) { bucket_message_ids_to_send = deferred_message_bucket[sending_bucket_id].ap_message_ids; } else { bucket_message_ids_to_send.clearall(); } #if GCS_DEBUG_SEND_MESSAGE_TIMINGS uint32_t delta_us = AP_HAL::micros() - start_us; hal.scheduler->restore_interrupts(data); if (delta_us > try_send_message_stats.fnbts_maxtime) { try_send_message_stats.fnbts_maxtime = delta_us; } #endif } ap_message GCS_MAVLINK::next_deferred_bucket_message_to_send() { if (sending_bucket_id == no_bucket_to_send) { // could happen if all streamrates are zero? return no_message_to_send; } const uint16_t now16_ms = AP_HAL::millis16(); const uint16_t ms_since_last_sent = now16_ms - deferred_message_bucket[sending_bucket_id].last_sent_ms; if (ms_since_last_sent < get_reschedule_interval_ms(deferred_message_bucket[sending_bucket_id])) { // not time to send this bucket return no_message_to_send; } const int16_t next = bucket_message_ids_to_send.first_set(); if (next == -1) { // should not happen #if CONFIG_HAL_BOARD == HAL_BOARD_SITL AP_HAL::panic("next_deferred_bucket_message_to_send called on empty bucket"); #endif find_next_bucket_to_send(); return no_message_to_send; } return (ap_message)next; } // call try_send_message if appropriate. Incorporates debug code to // record how long it takes to send a message. try_send_message is // expected to be overridden, not this function. bool GCS_MAVLINK::do_try_send_message(const ap_message id) { const bool in_delay_callback = hal.scheduler->in_delay_callback(); if (in_delay_callback && !should_send_message_in_delay_callback(id)) { return true; } if (telemetry_delayed()) { return false; } #if GCS_DEBUG_SEND_MESSAGE_TIMINGS void *data = hal.scheduler->disable_interrupts_save(); uint32_t start_send_message_us = AP_HAL::micros(); #endif if (!try_send_message(id)) { // didn't fit in buffer... #if GCS_DEBUG_SEND_MESSAGE_TIMINGS try_send_message_stats.no_space_for_message++; hal.scheduler->restore_interrupts(data); #endif return false; } #if GCS_DEBUG_SEND_MESSAGE_TIMINGS const uint32_t delta_us = AP_HAL::micros() - start_send_message_us; hal.scheduler->restore_interrupts(data); if (delta_us > try_send_message_stats.longest_time_us) { try_send_message_stats.longest_time_us = delta_us; try_send_message_stats.longest_id = id; } #endif return true; } int8_t GCS_MAVLINK::get_deferred_message_index(const ap_message id) const { for (uint8_t i=0; i interval_ms) { // should already have sent this one! ms_before_send_this_message = 0; #if GCS_DEBUG_SEND_MESSAGE_TIMINGS try_send_message_stats.behind++; #endif } else { ms_before_send_this_message = interval_ms - ms_since_last_sent; } if (ms_before_send_this_message < ms_before_next_message_to_send) { next_deferred_message_to_send_cache = i; ms_before_next_message_to_send = ms_before_send_this_message; } } } if (next_deferred_message_to_send_cache == -1) { // this really shouldn't happen; we force parameter rates, for example. return -1; } const uint16_t ms_since_last_sent = now16_ms - deferred_message[next_deferred_message_to_send_cache].last_sent_ms; if (ms_since_last_sent < deferred_message[next_deferred_message_to_send_cache].interval_ms) { return -1; } return next_deferred_message_to_send_cache; } extern mavlink_rov_state_monitoring_t rov_message; //extern mavlink_motor_speed_t mav_motor_speed; extern mavlink_motor_speed_t mav_motor_speed_back; mavlink_data64_t rov_message3; extern mavlink_set_slave_parameter_t get_stm32_param; extern mavlink_hv_reg_get_t hv_reg_get; extern uint8_t get_stm32_param_buf[7]; int countper = 0; uint16_t lvtruster_fault(uint8_t i,uint16_t motor_stall_flag,uint32_t propellerblock_flag){ if((motor_stall_flag&(0x0001<>(4*i); } } void GCS_MAVLINK::update_send() { const AP_UAVCAN &uavcan = AP::uavcan();//6自由度电机计算出来的PWM mav_motor_speed_back.motorTest = 0; mav_motor_speed_back.Ltrack =uavcan.motor_from_stm32[8]; mav_motor_speed_back.Rtrack =uavcan.motor_from_stm32[9]; mav_motor_speed_back.motor1 =(float)uavcan.motor_from_stm32[0]*100/7; mav_motor_speed_back.motor2 =(float)uavcan.motor_from_stm32[1]*100/7; mav_motor_speed_back.motor3 =(float)uavcan.HVmotor1.speed; mav_motor_speed_back.motor4 =(float)uavcan.HVmotor2.speed; mav_motor_speed_back.motor5 =(float)uavcan.HVmotor3.speed; mav_motor_speed_back.motor6 =0;//(float)uavcan.motor_from_stm32[5]; mav_motor_speed_back.motor7 =0;//(float)uavcan.motor_from_stm32[6]; mav_motor_speed_back.motor8 =0;//(float)uavcan.motor_from_stm32[7]; rov_message.floodlight = sub.lights; //pressure_level 在各个模式中已经赋值 rov_message.low_voltage = (float)(uavcan.board_voltage)/10;//传过来的是*100的? rov_message.high_voltage = (float)(uavcan.HVmotor2.voltage);//电调1的电压 rov_message.deep = fabsf(sub.barometer.get_altitude());//深度 rov_message.temp = (float)(uavcan.temperature_48Vpower)/10;//传过来的是*100的? rov_message.motor_block_flag = (uint16_t)(uavcan.motor_stall_flag); rov_message.motor_twine_flag[0] = lvtruster_fault(0,uavcan.motor_stall_flag,uavcan.propellerblock_flag);//(uint16_t)(uavcan.propellerblock_flag & 0x0000000F)|((uavcan.motor_stall_flag&0x0001)<<4); rov_message.motor_twine_flag[1] = lvtruster_fault(1,uavcan.motor_stall_flag,uavcan.propellerblock_flag);//(uint16_t)((uavcan.propellerblock_flag & 0x000000F0)>>4)|((uavcan.motor_stall_flag&0x0002)<<3); rov_message.motor_twine_flag[2] = (uint16_t)(uavcan.HVmotor1.fault); rov_message.motor_twine_flag[3] = (uint16_t)(uavcan.HVmotor2.fault); rov_message.motor_twine_flag[4] = (uint16_t)(uavcan.HVmotor3.fault); rov_message.motor_twine_flag[5] = 0;//(uint16_t)((uavcan.propellerblock_flag & 0x00F00000)>>20)|((uavcan.motor_stall_flag&0x0020)>>1);//高八位堵转 低八位缠绕 rov_message.motor_twine_flag[6] = 0;//(uint16_t)((uavcan.propellerblock_flag & 0x0F000000)>>24)|((uavcan.motor_stall_flag&0x0040)>>2); rov_message.motor_twine_flag[7] = 0;//(uint16_t)((uavcan.propellerblock_flag & 0xF0000000)>>28)|((uavcan.motor_stall_flag&0x0080)>>3); rov_message.motor_power[0] = 0; rov_message.motor_power[1] = 0; rov_message.motor_power[2] = (uint16_t)(uavcan.HVmotor1.torqueIQ); rov_message.motor_power[3] = (uint16_t)(uavcan.HVmotor2.torqueIQ); rov_message.motor_power[4] = (uint16_t)(uavcan.HVmotor3.torqueIQ); rov_message.motor_power[5] = 0; get_stm32_param.number = get_stm32_param_buf[0]; get_stm32_param.flag = get_stm32_param_buf[1]; get_stm32_param.XX1 = get_stm32_param_buf[2]; get_stm32_param.XX2 = get_stm32_param_buf[3]; get_stm32_param.XX3 = get_stm32_param_buf[4]; get_stm32_param.XX4 = get_stm32_param_buf[5]; get_stm32_param.YY = get_stm32_param_buf[6]; const NavEKF2 &ekf2 = AP::ahrs_navekf().get_NavEKF2_const(); Matrix3f mat; ekf2.getRotationBodyToNED(mat); countper++; if (countper>30) { countper = 0; mavlink_msg_rotation_matrix_array_send(chan, mat.c.x,mat.c.z,mat.c.y, mat.b.x,mat.b.z,mat.b.y, mat.a.x,mat.a.z,mat.a.y); } if (!hal.scheduler->in_delay_callback()) { // AP_Logger will not send log data if we are armed. AP::logger().handle_log_send(); } if (!deferred_messages_initialised) { initialise_message_intervals_from_streamrates(); deferred_messages_initialised = true; } #if GCS_DEBUG_SEND_MESSAGE_TIMINGS uint32_t retry_deferred_body_start = AP_HAL::micros(); #endif const uint32_t start = AP_HAL::millis(); while (AP_HAL::millis() - start < 5) { // spend a max of 5ms sending messages. This should never trigger - out_of_time() should become true if (gcs().out_of_time()) { #if GCS_DEBUG_SEND_MESSAGE_TIMINGS try_send_message_stats.out_of_time++; #endif break; } #if GCS_DEBUG_SEND_MESSAGE_TIMINGS retry_deferred_body_start = AP_HAL::micros(); #endif // check if any "specially handled" messages should be sent out { const int8_t next = deferred_message_to_send_index(); if (next != -1) { if (!do_try_send_message(deferred_message[next].id)) { break; } deferred_message[next].last_sent_ms += deferred_message[next].interval_ms; next_deferred_message_to_send_cache = -1; // deferred_message_to_send will recalculate #if GCS_DEBUG_SEND_MESSAGE_TIMINGS const uint32_t stop = AP_HAL::micros(); const uint32_t delta = stop - retry_deferred_body_start; if (delta > try_send_message_stats.max_retry_deferred_body_us) { try_send_message_stats.max_retry_deferred_body_us = delta; try_send_message_stats.max_retry_deferred_body_type = 1; } #endif continue; } } // check for any messages that the code has explicitly sent const int16_t fs = pushed_ap_message_ids.first_set(); if (fs != -1) { ap_message next = (ap_message)fs; if (!do_try_send_message(next)) { break; } pushed_ap_message_ids.clear(next); #if GCS_DEBUG_SEND_MESSAGE_TIMINGS const uint32_t stop = AP_HAL::micros(); const uint32_t delta = stop - retry_deferred_body_start; if (delta > try_send_message_stats.max_retry_deferred_body_us) { try_send_message_stats.max_retry_deferred_body_us = delta; try_send_message_stats.max_retry_deferred_body_type = 2; } #endif continue; } ap_message next = next_deferred_bucket_message_to_send(); if (next != no_message_to_send) { if (!do_try_send_message(next)) { break; } bucket_message_ids_to_send.clear(next); if (bucket_message_ids_to_send.count() == 0) { // we sent everything in the bucket. Reschedule it. deferred_message_bucket[sending_bucket_id].last_sent_ms += get_reschedule_interval_ms(deferred_message_bucket[sending_bucket_id]); find_next_bucket_to_send(); } #if GCS_DEBUG_SEND_MESSAGE_TIMINGS const uint32_t stop = AP_HAL::micros(); const uint32_t delta = stop - retry_deferred_body_start; if (delta > try_send_message_stats.max_retry_deferred_body_us) { try_send_message_stats.max_retry_deferred_body_us = delta; try_send_message_stats.max_retry_deferred_body_type = 3; } #endif continue; } break; } #if GCS_DEBUG_SEND_MESSAGE_TIMINGS const uint32_t stop = AP_HAL::micros(); const uint32_t delta = stop - retry_deferred_body_start; if (delta > try_send_message_stats.max_retry_deferred_body_us) { try_send_message_stats.max_retry_deferred_body_us = delta; try_send_message_stats.max_retry_deferred_body_type = 4; } #endif // update the number of packets transmitted base on seqno, making // the assumption that we don't send more than 256 messages // between the last pass through here mavlink_status_t *status = mavlink_get_channel_status(chan); if (status != nullptr) { send_packet_count += uint8_t(status->current_tx_seq - last_tx_seq); last_tx_seq = status->current_tx_seq; } } void GCS_MAVLINK::remove_message_from_bucket(int8_t bucket, ap_message id) { deferred_message_bucket[bucket].ap_message_ids.clear(id); if (bucket == sending_bucket_id) { bucket_message_ids_to_send.clear(id); } if (deferred_message_bucket[bucket].ap_message_ids.count() == 0) { // bucket empty. Free it: deferred_message_bucket[bucket].interval_ms = 0; deferred_message_bucket[bucket].last_sent_ms = 0; if (sending_bucket_id == bucket) { find_next_bucket_to_send(); } } } bool GCS_MAVLINK::set_ap_message_interval(enum ap_message id, uint16_t interval_ms) { if (id == MSG_NEXT_PARAM) { // force parameters to *always* get streamed so a vehicle is // recoverable from bad configuration: if (interval_ms == 0) { interval_ms = 100; } else if (interval_ms > 1000) { interval_ms = 1000; } } // send messages out at most 80% of main loop rate if (interval_ms != 0 && interval_ms*800 < AP::scheduler().get_loop_period_us()) { interval_ms = AP::scheduler().get_loop_period_us()/800.0f; } // check if it's a specially-handled message: const int8_t deferred_offset = get_deferred_message_index(id); if (deferred_offset != -1) { deferred_message[deferred_offset].interval_ms = interval_ms; deferred_message[deferred_offset].last_sent_ms = AP_HAL::millis16(); return true; } // see which bucket has the closest interval: int8_t closest_bucket = -1; uint16_t closest_bucket_interval_delta = UINT16_MAX; int8_t in_bucket = -1; int8_t empty_bucket_id = -1; for (uint8_t i=0; iflags &= ~MAVLINK_STATUS_FLAG_OUT_MAVLINK1; } } if (!routing.check_and_forward(chan, msg)) { // the routing code has indicated we should not handle this packet locally return; } if (!accept_packet(status, msg)) { // e.g. enforce-sysid says we shouldn't look at this packet return; } handleMessage(msg); } void GCS_MAVLINK::update_receive(uint32_t max_time_us) { // do absolutely nothing if we are locked if (locked()) { return; } // receive new packets mavlink_message_t msg; mavlink_status_t status; uint32_t tstart_us = AP_HAL::micros(); uint32_t now_ms = AP_HAL::millis(); hal.util->perf_begin(_perf_update); status.packet_rx_drop_count = 0; const uint16_t nbytes = _port->available(); for (uint16_t i=0; iread(); const uint32_t protocol_timeout = 4000; if (alternative.handler && now_ms - alternative.last_mavlink_ms > protocol_timeout) { /* we have an alternative protocol handler installed and we haven't parsed a MAVLink packet for 4 seconds. Try parsing using alternative handler */ if (alternative.handler(c, mavlink_comm_port[chan])) { alternative.last_alternate_ms = now_ms; gcs_alternative_active[chan] = true; } /* we may also try parsing as MAVLink if we haven't had a successful parse on the alternative protocol for 4s */ if (now_ms - alternative.last_alternate_ms <= protocol_timeout) { continue; } } bool parsed_packet = false; // Try to get a new message if (mavlink_parse_char(chan, c, &msg, &status)) { hal.util->persistent_data.last_mavlink_msgid = msg.msgid; hal.util->perf_begin(_perf_packet); packetReceived(status, msg); hal.util->perf_end(_perf_packet); parsed_packet = true; gcs_alternative_active[chan] = false; alternative.last_mavlink_ms = now_ms; hal.util->persistent_data.last_mavlink_msgid = 0; } if (parsed_packet || i % 100 == 0) { // make sure we don't spend too much time parsing mavlink messages if (AP_HAL::micros() - tstart_us > max_time_us) { break; } } } const uint32_t tnow = AP_HAL::millis(); // send a timesync message every 10 seconds; this is for data // collection purposes if (tnow - _timesync_request.last_sent_ms > _timesync_request.interval_ms && !is_private()) { if (HAVE_PAYLOAD_SPACE(chan, TIMESYNC)) { send_timesync(); _timesync_request.last_sent_ms = tnow; } } // consider logging mavlink stats: if (is_active() || is_streaming()) { if (tnow - last_mavlink_stats_logged > 1000) { log_mavlink_stats(); last_mavlink_stats_logged = tnow; } } #if GCS_DEBUG_SEND_MESSAGE_TIMINGS const uint16_t now16_ms{AP_HAL::millis16()}; if (uint16_t(now16_ms - try_send_message_stats.statustext_last_sent_ms) > 10000U) { if (try_send_message_stats.longest_time_us) { gcs().send_text(MAV_SEVERITY_INFO, "GCS.chan(%u): ap_msg=%u took %uus to send", chan, try_send_message_stats.longest_id, try_send_message_stats.longest_time_us); try_send_message_stats.longest_time_us = 0; } if (try_send_message_stats.no_space_for_message && (is_active() || is_streaming())) { gcs().send_text(MAV_SEVERITY_INFO, "GCS.chan(%u): out-of-space: %u", chan, try_send_message_stats.no_space_for_message); try_send_message_stats.no_space_for_message = 0; } if (try_send_message_stats.out_of_time) { gcs().send_text(MAV_SEVERITY_INFO, "GCS.chan(%u): out-of-time=%u", chan, try_send_message_stats.out_of_time); try_send_message_stats.out_of_time = 0; } if (max_slowdown_ms) { gcs().send_text(MAV_SEVERITY_INFO, "GCS.chan(%u): max slowdown=%u", chan, max_slowdown_ms); max_slowdown_ms = 0; } if (try_send_message_stats.behind) { gcs().send_text(MAV_SEVERITY_INFO, "GCS.chan(%u): behind=%u", chan, try_send_message_stats.behind); try_send_message_stats.behind = 0; } if (try_send_message_stats.fnbts_maxtime) { gcs().send_text(MAV_SEVERITY_INFO, "GCS.chan(%u): fnbts_maxtime=%uus", chan, try_send_message_stats.fnbts_maxtime); try_send_message_stats.fnbts_maxtime = 0; } if (try_send_message_stats.max_retry_deferred_body_us) { gcs().send_text(MAV_SEVERITY_INFO, "GCS.chan(%u): retry_body_maxtime=%uus (%u)", chan, try_send_message_stats.max_retry_deferred_body_us, try_send_message_stats.max_retry_deferred_body_type ); try_send_message_stats.max_retry_deferred_body_us = 0; } for (uint8_t i=0; iperf_end(_perf_update); } /* record stats about this link to logger */ void GCS_MAVLINK::log_mavlink_stats() { mavlink_status_t *status = mavlink_get_channel_status(chan); if (status == nullptr) { return; } const struct log_MAV pkt = { LOG_PACKET_HEADER_INIT(LOG_MAV_MSG), time_us : AP_HAL::micros64(), chan : (uint8_t)chan, packet_tx_count : send_packet_count, packet_rx_success_count: status->packet_rx_success_count, packet_rx_drop_count : status->packet_rx_drop_count }; AP::logger().WriteBlock(&pkt, sizeof(pkt)); } /* send the SYSTEM_TIME message */ void GCS_MAVLINK::send_system_time() { uint64_t time_unix = 0; AP::rtc().get_utc_usec(time_unix); // may fail, leaving time_unix at 0 mavlink_msg_system_time_send( chan, time_unix, AP_HAL::millis()); } /* send RC_CHANNELS messages */ void GCS_MAVLINK::send_rc_channels() const { AP_RSSI *rssi = AP::rssi(); uint8_t receiver_rssi = 0; if (rssi != nullptr) { receiver_rssi = rssi->read_receiver_rssi_uint8(); } uint16_t values[18] = {}; rc().get_radio_in(values, ARRAY_SIZE(values)); mavlink_msg_rc_channels_send( chan, AP_HAL::millis(), RC_Channels::get_valid_channel_count(), values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7], values[8], values[9], values[10], values[11], values[12], values[13], values[14], values[15], values[16], values[17], receiver_rssi); } bool GCS_MAVLINK::sending_mavlink1() const { const mavlink_status_t *status = mavlink_get_channel_status(chan); if (status == nullptr) { // should not happen return true; } return ((status->flags & MAVLINK_STATUS_FLAG_OUT_MAVLINK1) != 0); } void GCS_MAVLINK::send_rc_channels_raw() const { // for mavlink1 send RC_CHANNELS_RAW, for compatibility with OSD // implementations if (!sending_mavlink1()) { return; } AP_RSSI *rssi = AP::rssi(); uint8_t receiver_rssi = 0; if (rssi != nullptr) { receiver_rssi = rssi->read_receiver_rssi_uint8(); } uint16_t values[8] = {}; rc().get_radio_in(values, ARRAY_SIZE(values)); mavlink_msg_rc_channels_raw_send( chan, AP_HAL::millis(), 0, values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7], receiver_rssi); } void GCS_MAVLINK::send_raw_imu() { const AP_InertialSensor &ins = AP::ins(); const Compass &compass = AP::compass(); const Vector3f &accel = ins.get_accel(0); const Vector3f &gyro = ins.get_gyro(0); Vector3f mag; if (compass.get_count() >= 1) { mag = compass.get_field(0); } else { mag.zero(); } mavlink_msg_raw_imu_send( chan, AP_HAL::micros(), accel.x * 1000.0f / GRAVITY_MSS, accel.y * 1000.0f / GRAVITY_MSS, accel.z * 1000.0f / GRAVITY_MSS, gyro.x * 1000.0f, gyro.y * 1000.0f, gyro.z * 1000.0f, mag.x, mag.y, mag.z); } void GCS_MAVLINK::send_scaled_imu(uint8_t instance, void (*send_fn)(mavlink_channel_t chan, uint32_t time_ms, int16_t xacc, int16_t yacc, int16_t zacc, int16_t xgyro, int16_t ygyro, int16_t zgyro, int16_t xmag, int16_t ymag, int16_t zmag)) { const AP_InertialSensor &ins = AP::ins(); const Compass &compass = AP::compass(); bool have_data = false; Vector3f accel{}; if (ins.get_accel_count() > instance) { accel = ins.get_accel(instance); have_data = true; } Vector3f gyro{}; if (ins.get_accel_count() > instance) { gyro = ins.get_gyro(instance); have_data = true; } Vector3f mag{}; if (compass.get_count() > instance) { mag = compass.get_field(instance); have_data = true; } if (!have_data) { return; } send_fn( chan, AP_HAL::millis(), accel.x * 1000.0f / GRAVITY_MSS, accel.y * 1000.0f / GRAVITY_MSS, accel.z * 1000.0f / GRAVITY_MSS, gyro.x * 1000.0f, gyro.y * 1000.0f, gyro.z * 1000.0f, mag.x, mag.y, mag.z); } // send data for barometer and airspeed sensors instances. In the // case that we run out of instances of one before the other we send // the relevant fields as 0. void GCS_MAVLINK::send_scaled_pressure_instance(uint8_t instance, void (*send_fn)(mavlink_channel_t chan, uint32_t time_boot_ms, float press_abs, float press_diff, int16_t temperature)) { const AP_Baro &barometer = AP::baro(); bool have_data = false; float press_abs = 0.0f; float temperature = 0.0f; if (instance < barometer.num_instances()) { press_abs = barometer.get_pressure(instance) * 0.01f; temperature = barometer.get_temperature(instance)*100; have_data = true; } float press_diff = 0; // pascal AP_Airspeed *airspeed = AP_Airspeed::get_singleton(); if (airspeed != nullptr && airspeed->enabled(instance)) { press_diff = airspeed->get_differential_pressure(instance) * 0.01f; have_data = true; } if (!have_data) { return; } send_fn( chan, AP_HAL::millis(), press_abs, // hectopascal press_diff, // hectopascal temperature); // 0.01 degrees C } void GCS_MAVLINK::send_scaled_pressure() { send_scaled_pressure_instance(0, mavlink_msg_scaled_pressure_send); } void GCS_MAVLINK::send_scaled_pressure2() { send_scaled_pressure_instance(1, mavlink_msg_scaled_pressure2_send); } void GCS_MAVLINK::send_scaled_pressure3() { send_scaled_pressure_instance(2, mavlink_msg_scaled_pressure3_send); } void GCS_MAVLINK::send_sensor_offsets() { const AP_InertialSensor &ins = AP::ins(); const Compass &compass = AP::compass(); // run this message at a much lower rate - otherwise it // pointlessly wastes quite a lot of bandwidth static uint8_t counter; if (counter++ < 10) { return; } counter = 0; const Vector3f &mag_offsets = compass.get_offsets(0); const Vector3f &accel_offsets = ins.get_accel_offsets(0); const Vector3f &gyro_offsets = ins.get_gyro_offsets(0); const AP_Baro &barometer = AP::baro(); mavlink_msg_sensor_offsets_send(chan, mag_offsets.x, mag_offsets.y, mag_offsets.z, compass.get_declination(), barometer.get_pressure(), barometer.get_temperature()*100, gyro_offsets.x, gyro_offsets.y, gyro_offsets.z, accel_offsets.x, accel_offsets.y, accel_offsets.z); } void GCS_MAVLINK::send_ahrs() { const AP_AHRS &ahrs = AP::ahrs(); const Vector3f &omega_I = ahrs.get_gyro_drift(); mavlink_msg_ahrs_send( chan, omega_I.x, omega_I.y, omega_I.z, 0, 0, ahrs.get_error_rp(), ahrs.get_error_yaw()); } /* send a statustext text string to specific MAVLink bitmask */ void GCS::send_statustext(MAV_SEVERITY severity, uint8_t dest_bitmask, const char *text) { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL if (strlen(text) > MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN) { AP_HAL::panic("Statustext (%s) too long", text); } #endif AP_Logger *logger = AP_Logger::get_singleton(); if (logger != nullptr) { logger->Write_Message(text); } if (frsky != nullptr) { frsky->queue_message(severity, text); } AP_Notify *notify = AP_Notify::get_singleton(); if (notify) { notify->send_text(text); } // filter destination ports to only allow active ports. statustext_t statustext{}; statustext.bitmask = (GCS_MAVLINK::active_channel_mask() | GCS_MAVLINK::streaming_channel_mask() ) & dest_bitmask; if (!statustext.bitmask) { // nowhere to send return; } statustext.msg.severity = severity; strncpy(statustext.msg.text, text, sizeof(statustext.msg.text)); WITH_SEMAPHORE(_statustext_sem); // The force push will ensure comm links do not block other comm links forever if they fail. // If we push to a full buffer then we overwrite the oldest entry, effectively removing the // block but not until the buffer fills up. _statustext_queue.push_force(statustext); // try and send immediately if possible service_statustext(); } /* send a statustext message to specific MAVLink connections in a bitmask */ void GCS::service_statustext(void) { // create bitmask of what mavlink ports we should send this text to. // note, if sending to all ports, we only need to store the bitmask for each and the string only once. // once we send over a link, clear the port but other busy ports bit may stay allowing for faster links // to clear the bit and send quickly but slower links to still store the string. Regardless of mixed // bitrates of ports, a maximum of _status_capacity strings can be buffered. Downside // is if you have a super slow link mixed with a faster port, if there are _status_capacity // strings in the slow queue then the next item can not be queued for the faster link if (_statustext_queue.empty()) { // nothing to do return; } for (uint8_t idx=0; idx<_status_capacity; ) { statustext_t *statustext = _statustext_queue[idx]; if (statustext == nullptr) { break; } // try and send to all active mavlink ports listed in the statustext.bitmask for (uint8_t i=0; ibitmask & chan_bit) { // something is queued on a port and that's the port index we're looped at mavlink_channel_t chan_index = (mavlink_channel_t)(MAVLINK_COMM_0+i); if (HAVE_PAYLOAD_SPACE(chan_index, STATUSTEXT)) { // we have space so send then clear that channel bit on the mask mavlink_msg_statustext_send(chan_index, statustext->msg.severity, statustext->msg.text); statustext->bitmask &= ~chan_bit; } } } if (statustext->bitmask == 0) { _statustext_queue.remove(idx); } else { // move to next index idx++; } } } void GCS::send_message(enum ap_message id) { for (uint8_t i=0; isend_message(id); } } void GCS::update_send() { if (!initialised_missionitemprotocol_objects) { initialised_missionitemprotocol_objects = true; // once-only initialisation of MissionItemProtocol objects: AP_Mission *mission = AP::mission(); if (mission != nullptr) { _missionitemprotocol_waypoints = new MissionItemProtocol_Waypoints(*mission); } AP_Rally *rally = AP::rally(); if (rally != nullptr) { _missionitemprotocol_rally = new MissionItemProtocol_Rally(*rally); } } if (_missionitemprotocol_waypoints != nullptr) { _missionitemprotocol_waypoints->update(); } if (_missionitemprotocol_rally != nullptr) { _missionitemprotocol_rally->update(); } for (uint8_t i=0; iupdate_send(); } WITH_SEMAPHORE(_statustext_sem); service_statustext(); } void GCS::update_receive(void) { for (uint8_t i=0; iupdate_receive(); } // also update UART pass-thru, if enabled update_passthru(); } void GCS::send_mission_item_reached_message(uint16_t mission_index) { for (uint8_t i=0; imission_item_reached_index = mission_index; chan(i)->send_message(MSG_MISSION_ITEM_REACHED); } } void GCS::setup_console() { AP_HAL::UARTDriver *uart = AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_MAVLink, 0); if (uart == nullptr) { // this is probably not going to end well. return; } if (ARRAY_SIZE(chan_parameters) == 0) { return; } create_gcs_mavlink_backend(chan_parameters[0], *uart); } GCS_MAVLINK_Parameters::GCS_MAVLINK_Parameters() { AP_Param::setup_object_defaults(this, var_info); } void GCS::create_gcs_mavlink_backend(GCS_MAVLINK_Parameters ¶ms, AP_HAL::UARTDriver &uart) { if (_num_gcs >= ARRAY_SIZE(chan_parameters)) { return; } _chan[_num_gcs] = new_gcs_mavlink_backend(params, uart); if (_chan[_num_gcs] == nullptr) { return; } if (!_chan[_num_gcs]->init(_num_gcs)) { delete _chan[_num_gcs]; _chan[_num_gcs] = nullptr; return; } _num_gcs++; } void GCS::setup_uarts() { for (uint8_t i = 1; i < MAVLINK_COMM_NUM_BUFFERS; i++) { if (i >= ARRAY_SIZE(chan_parameters)) { // should not happen break; } AP_HAL::UARTDriver *uart = AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_MAVLink, i); if (uart == nullptr) { // no more mavlink uarts break; } create_gcs_mavlink_backend(chan_parameters[i], *uart); } if (frsky == nullptr) { frsky = new AP_Frsky_Telem(); if (frsky == nullptr || !frsky->init()) { delete frsky; frsky = nullptr; } } #if !HAL_MINIMIZE_FEATURES devo_telemetry.init(); #endif } // report battery2 state void GCS_MAVLINK::send_battery2() { const AP_BattMonitor &battery = AP::battery(); if (battery.num_instances() > 1) { float current; if (battery.current_amps(current, 1)) { current *= 100; // 10*mA } else { current = -1; } mavlink_msg_battery2_send(chan, battery.voltage(1)*1000, current); } } /* handle a SET_MODE MAVLink message */ void GCS_MAVLINK::handle_set_mode(const mavlink_message_t &msg) { mavlink_set_mode_t packet; mavlink_msg_set_mode_decode(&msg, &packet); const MAV_MODE _base_mode = (MAV_MODE)packet.base_mode; const uint32_t _custom_mode = packet.custom_mode; const MAV_RESULT result = _set_mode_common(_base_mode, _custom_mode); // send ACK or NAK. Note that this is extraodinarily improper - // we are sending a command-ack for a message which is not a // command. The command we are acking (ID=11) doesn't actually // exist, but if it did we'd probably be acking something // completely unrelated to setting modes. if (HAVE_PAYLOAD_SPACE(chan, MAVLINK_MSG_ID_COMMAND_ACK)) { mavlink_msg_command_ack_send(chan, MAVLINK_MSG_ID_SET_MODE, result); } } /* code common to both SET_MODE mavlink message and command long set_mode msg */ MAV_RESULT GCS_MAVLINK::_set_mode_common(const MAV_MODE _base_mode, const uint32_t _custom_mode) { MAV_RESULT result = MAV_RESULT_UNSUPPORTED; // only accept custom modes because there is no easy mapping from Mavlink flight modes to AC flight modes if (_base_mode & MAV_MODE_FLAG_CUSTOM_MODE_ENABLED) { if (set_mode(_custom_mode)) { result = MAV_RESULT_ACCEPTED; } } else if (_base_mode == (MAV_MODE)MAV_MODE_FLAG_DECODE_POSITION_SAFETY) { // set the safety switch position. Must be in a command by itself if (_custom_mode == 0) { // turn safety off (pwm outputs flow to the motors) hal.rcout->force_safety_off(); result = MAV_RESULT_ACCEPTED; } else if (_custom_mode == 1) { // turn safety on (no pwm outputs to the motors) if (hal.rcout->force_safety_on()) { result = MAV_RESULT_ACCEPTED; } } } return result; } /* send OPTICAL_FLOW message */ void GCS_MAVLINK::send_opticalflow() { #if AP_AHRS_NAVEKF_AVAILABLE const OpticalFlow *optflow = AP::opticalflow(); // exit immediately if no optical flow sensor or not healthy if (optflow == nullptr || !optflow->healthy()) { return; } // get rates from sensor const Vector2f &flowRate = optflow->flowRate(); const Vector2f &bodyRate = optflow->bodyRate(); const AP_AHRS &ahrs = AP::ahrs(); float hagl = 0; if (ahrs.have_inertial_nav()) { if (!ahrs.get_hagl(hagl)) { return; } } // populate and send message mavlink_msg_optical_flow_send( chan, AP_HAL::millis(), 0, // sensor id is zero flowRate.x, flowRate.y, flowRate.x - bodyRate.x, flowRate.y - bodyRate.y, optflow->quality(), hagl, // ground distance (in meters) set to zero flowRate.x, flowRate.y); #endif } /* send AUTOPILOT_VERSION packet */ void GCS_MAVLINK::send_autopilot_version() const { uint32_t flight_sw_version; uint32_t middleware_sw_version = 0; uint32_t board_version = 0; char flight_custom_version[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_FLIGHT_CUSTOM_VERSION_LEN]{}; char middleware_custom_version[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_MIDDLEWARE_CUSTOM_VERSION_LEN]{}; char os_custom_version[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_OS_CUSTOM_VERSION_LEN]{}; uint16_t vendor_id = 0; uint16_t product_id = 0; uint64_t uid = 0; uint8_t uid2[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_UID2_LEN] = {0}; const AP_FWVersion &version = AP::fwversion(); flight_sw_version = version.major << (8 * 3) | \ version.minor << (8 * 2) | \ version.patch << (8 * 1) | \ (uint32_t)(version.fw_type) << (8 * 0); if (version.fw_hash_str) { strncpy(flight_custom_version, version.fw_hash_str, sizeof(flight_custom_version) - 1); flight_custom_version[sizeof(flight_custom_version) - 1] = '\0'; } if (version.middleware_hash_str) { strncpy(middleware_custom_version, version.middleware_hash_str, sizeof(middleware_custom_version) - 1); middleware_custom_version[sizeof(middleware_custom_version) - 1] = '\0'; } if (version.os_hash_str) { strncpy(os_custom_version, version.os_hash_str, sizeof(os_custom_version) - 1); os_custom_version[sizeof(os_custom_version) - 1] = '\0'; } mavlink_msg_autopilot_version_send( chan, capabilities(), flight_sw_version, middleware_sw_version, version.os_sw_version, board_version, (uint8_t *)flight_custom_version, (uint8_t *)middleware_custom_version, (uint8_t *)os_custom_version, vendor_id, product_id, uid, uid2 ); } /* send LOCAL_POSITION_NED message */ void GCS_MAVLINK::send_local_position() const { const AP_AHRS &ahrs = AP::ahrs(); Vector3f local_position, velocity; if (!ahrs.get_relative_position_NED_home(local_position) || !ahrs.get_velocity_NED(velocity)) { // we don't know the position and velocity return; } mavlink_msg_local_position_ned_send( chan, AP_HAL::millis(), local_position.x, local_position.y, local_position.z, velocity.x, velocity.y, velocity.z); } /* send VIBRATION message */ void GCS_MAVLINK::send_vibration() const { const AP_InertialSensor &ins = AP::ins(); Vector3f vibration = ins.get_vibration_levels(); mavlink_msg_vibration_send( chan, AP_HAL::micros64(), vibration.x, vibration.y, vibration.z, ins.get_accel_clip_count(0), ins.get_accel_clip_count(1), ins.get_accel_clip_count(2)); } void GCS_MAVLINK::send_named_float(const char *name, float value) const { char float_name[MAVLINK_MSG_NAMED_VALUE_FLOAT_FIELD_NAME_LEN+1] {}; strncpy(float_name, name, MAVLINK_MSG_NAMED_VALUE_FLOAT_FIELD_NAME_LEN); mavlink_msg_named_value_float_send(chan, AP_HAL::millis(), float_name, value); } void GCS_MAVLINK::send_home_position() const { if (!AP::ahrs().home_is_set()) { return; } const Location &home = AP::ahrs().get_home(); const float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; mavlink_msg_home_position_send( chan, home.lat, home.lng, home.alt * 10, 0.0f, 0.0f, 0.0f, q, 0.0f, 0.0f, 0.0f, AP_HAL::micros64()); } void GCS_MAVLINK::send_gps_global_origin() const { Location ekf_origin; if (!AP::ahrs().get_origin(ekf_origin)) { return; } mavlink_msg_gps_global_origin_send( chan, ekf_origin.lat, ekf_origin.lng, ekf_origin.alt * 10, AP_HAL::micros64()); } /* Send MAVLink heartbeat */ void GCS_MAVLINK::send_heartbeat() const { mavlink_msg_heartbeat_send( chan, gcs().frame_type(), MAV_AUTOPILOT_ARDUPILOTMEGA, base_mode(), gcs().custom_mode(), system_status()); } MAV_RESULT GCS_MAVLINK::handle_command_set_message_interval(const mavlink_command_long_t &packet) { const uint32_t msg_id = (uint32_t)packet.param1; const int32_t interval_us = (int32_t)packet.param2; uint16_t interval_ms; if (interval_us == 0) { // zero is "reset to default rate" if (!get_default_interval_for_mavlink_message_id(msg_id, interval_ms)) { return MAV_RESULT_FAILED; } } else if (interval_us == -1) { // minus-one is "stop sending" interval_ms = 0; } else if (interval_us < 1000) { // don't squash sub-ms times to zero interval_ms = 1; } else if (interval_us > 60000000) { interval_ms = 60000; } else { interval_ms = interval_us / 1000; } if (set_mavlink_message_id_interval(msg_id, interval_ms)) { return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } MAV_RESULT GCS_MAVLINK::handle_command_request_message(const mavlink_command_long_t &packet) { const uint32_t mavlink_id = (uint32_t)packet.param1; const ap_message id = mavlink_id_to_ap_message_id(mavlink_id); if (id == MSG_LAST) { return MAV_RESULT_FAILED; } send_message(id); return MAV_RESULT_ACCEPTED; } bool GCS_MAVLINK::get_ap_message_interval(ap_message id, uint16_t &interval_ms) const { // check if it's a specially-handled message: const int8_t deferred_offset = get_deferred_message_index(id); if (deferred_offset != -1) { interval_ms = deferred_message[deferred_offset].interval_ms; return true; } // check the deferred message buckets: for (uint8_t i=0; i= 2 << 15) { // response packet limits range this works against! mavlink_msg_message_interval_send(chan, mavlink_id, 0); // not available return MAV_RESULT_FAILED; } const ap_message id = mavlink_id_to_ap_message_id(mavlink_id); if (id == MSG_LAST) { mavlink_msg_message_interval_send(chan, mavlink_id, 0); // not available return MAV_RESULT_FAILED; } uint16_t interval_ms = 0; if (!get_ap_message_interval(id, interval_ms)) { // not streaming this message at the moment... mavlink_msg_message_interval_send(chan, mavlink_id, -1); // disabled return MAV_RESULT_ACCEPTED; } if (interval_ms == 0) { mavlink_msg_message_interval_send(chan, mavlink_id, -1); // disabled return MAV_RESULT_ACCEPTED; } mavlink_msg_message_interval_send(chan, mavlink_id, interval_ms * 1000); return MAV_RESULT_ACCEPTED; } // are we still delaying telemetry to try to avoid Xbee bricking? bool GCS_MAVLINK::telemetry_delayed() const { uint32_t tnow = AP_HAL::millis() >> 10; if (tnow > telem_delay()) { return false; } if (chan == MAVLINK_COMM_0 && hal.gpio->usb_connected()) { // this is USB telemetry, so won't be an Xbee return false; } // we're either on the 2nd UART, or no USB cable is connected // we need to delay telemetry by the TELEM_DELAY time return true; } /* send SERVO_OUTPUT_RAW */ void GCS_MAVLINK::send_servo_output_raw() { uint16_t values[16] {}; if (in_hil_mode()) { for (uint8_t i=0; i<16; i++) { values[i] = SRV_Channels::srv_channel(i)->get_output_pwm(); } } else { hal.rcout->read(values, 16); } for (uint8_t i=0; i<16; i++) { if (values[i] == 65535) { values[i] = 0; } } mavlink_msg_servo_output_raw_send( chan, AP_HAL::micros(), 0, // port values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7], values[8], values[9], values[10], values[11], values[12], values[13], values[14], values[15]); } void GCS_MAVLINK::send_accelcal_vehicle_position(uint32_t position) { if (HAVE_PAYLOAD_SPACE(chan, COMMAND_LONG)) { mavlink_msg_command_long_send( chan, 0, 0, MAV_CMD_ACCELCAL_VEHICLE_POS, 0, (float) position, 0, 0, 0, 0, 0, 0); } } float GCS_MAVLINK::vfr_hud_airspeed() const { AP_Airspeed *airspeed = AP_Airspeed::get_singleton(); if (airspeed != nullptr && airspeed->healthy()) { return airspeed->get_airspeed(); } // because most vehicles don't have airspeed sensors, we return a // different sort of speed estimate in the relevant field for // comparison's sake. return AP::gps().ground_speed(); } float GCS_MAVLINK::vfr_hud_climbrate() const { Vector3f velned; if (!AP::ahrs().get_velocity_NED(velned)) { velned.zero(); } return -velned.z; } float GCS_MAVLINK::vfr_hud_alt() const { return global_position_current_loc.alt * 0.01f; // cm -> m } void GCS_MAVLINK::send_vfr_hud() { AP_AHRS &ahrs = AP::ahrs(); // return values ignored; we send stale data ahrs.get_position(global_position_current_loc); mavlink_msg_vfr_hud_send( chan, vfr_hud_airspeed(), ahrs.groundspeed(), (ahrs.yaw_sensor / 100) % 360, vfr_hud_throttle(), vfr_hud_alt(), vfr_hud_climbrate()); } void GCS_MAVLINK::zero_rc_outputs() { // Send an invalid signal to the motors to prevent spinning due to neutral (1500) pwm pulse being cut short // For that matter, send an invalid signal to all channels to prevent undesired/unexpected behavior SRV_Channels::cork(); for (int i=0; iwrite(i, 0); } SRV_Channels::push(); } /* handle a MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN command Optionally disable PX4IO overrides. This is done for quadplanes to prevent the mixer running while rebooting which can start the VTOL motors. That can be dangerous when a preflight reboot is done with the pilot close to the aircraft and can also damage the aircraft */ MAV_RESULT GCS_MAVLINK::handle_preflight_reboot(const mavlink_command_long_t &packet) { if (is_equal(packet.param1, 42.0f) && is_equal(packet.param2, 24.0f) && is_equal(packet.param3, 71.0f) && is_equal(packet.param4, 93.0f)) { // this is a magic sequence to force the main loop to // lockup. This is for testing the stm32 watchdog // functionality while (true) { send_text(MAV_SEVERITY_WARNING,"entering lockup"); hal.scheduler->delay(250); } } if (hal.util->get_soft_armed()) { // refuse reboot when armed return MAV_RESULT_FAILED; } if (!(is_equal(packet.param1, 1.0f) || is_equal(packet.param1, 3.0f))) { // param1 must be 1 or 3 - 1 being reboot, 3 being reboot-to-bootloader return MAV_RESULT_UNSUPPORTED; } if (should_zero_rc_outputs_on_reboot()) { zero_rc_outputs(); } // send ack before we reboot mavlink_msg_command_ack_send(chan, packet.command, MAV_RESULT_ACCEPTED); // Notify might want to blink some LEDs: AP_Notify *notify = AP_Notify::get_singleton(); if (notify) { AP_Notify::flags.firmware_update = 1; notify->update(); } // force safety on hal.rcout->force_safety_on(); // flush pending parameter writes AP_Param::flush(); hal.scheduler->delay(200); // when packet.param1 == 3 we reboot to hold in bootloader const bool hold_in_bootloader = is_equal(packet.param1, 3.0f); hal.scheduler->reboot(hold_in_bootloader); return MAV_RESULT_FAILED; } /* handle a flight termination request */ MAV_RESULT GCS_MAVLINK::handle_flight_termination(const mavlink_command_long_t &packet) { AP_AdvancedFailsafe *failsafe = get_advanced_failsafe(); if (failsafe == nullptr) { return MAV_RESULT_UNSUPPORTED; } bool should_terminate = packet.param1 > 0.5f; if (failsafe->gcs_terminate(should_terminate, "GCS request")) { return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } /* handle a R/C bind request (for spektrum) */ MAV_RESULT GCS_MAVLINK::handle_rc_bind(const mavlink_command_long_t &packet) { // initiate bind procedure. We accept the DSM type from either // param1 or param2 due to a past mixup with what parameter is the // right one if (!RC_Channels::receiver_bind(packet.param2>0?packet.param2:packet.param1)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } uint64_t GCS_MAVLINK::timesync_receive_timestamp_ns() const { uint64_t ret = _port->receive_time_constraint_us(PAYLOAD_SIZE(chan, TIMESYNC)); if (ret == 0) { ret = AP_HAL::micros64(); } return ret*1000LL; } uint64_t GCS_MAVLINK::timesync_timestamp_ns() const { // we add in our own system id try to ensure we only consider // responses to our own timesync request messages return AP_HAL::micros64()*1000LL + mavlink_system.sysid; } /* return a timesync request Sends back ts1 as received, and tc1 is the local timestamp in usec */ void GCS_MAVLINK::handle_timesync(const mavlink_message_t &msg) { // decode incoming timesync message mavlink_timesync_t tsync; mavlink_msg_timesync_decode(&msg, &tsync); if (tsync.tc1 != 0) { // this is a response to a timesync request if (tsync.ts1 != _timesync_request.sent_ts1) { // we didn't actually send the request.... or it's a // response to an ancient request... return; } const uint64_t round_trip_time_us = (timesync_receive_timestamp_ns() - _timesync_request.sent_ts1)*0.001f; #if 0 gcs().send_text(MAV_SEVERITY_INFO, "timesync response sysid=%u (latency=%fms)", msg.sysid, round_trip_time_us*0.001f); #endif AP_Logger *logger = AP_Logger::get_singleton(); if (logger != nullptr) { AP::logger().Write( "TSYN", "TimeUS,SysID,RTT", "s-s", "F-F", "QBQ", AP_HAL::micros64(), msg.sysid, round_trip_time_us ); } return; } if (!HAVE_PAYLOAD_SPACE(chan, TIMESYNC)) { // drop this timesync request entirely return; } // create new timesync struct with tc1 field as system time in // nanoseconds. The client timestamp is as close as possible to // the time we received the TIMESYNC message. mavlink_timesync_t rsync; rsync.tc1 = timesync_receive_timestamp_ns(); rsync.ts1 = tsync.ts1; // respond with a timesync message mavlink_msg_timesync_send( chan, rsync.tc1, rsync.ts1 ); } /* * broadcast a timesync message. We may get multiple responses to this request. */ void GCS_MAVLINK::send_timesync() { _timesync_request.sent_ts1 = timesync_timestamp_ns(); mavlink_msg_timesync_send( chan, 0, _timesync_request.sent_ts1 ); } void GCS_MAVLINK::handle_statustext(const mavlink_message_t &msg) { AP_Logger *logger = AP_Logger::get_singleton(); if (logger == nullptr) { return; } mavlink_statustext_t packet; mavlink_msg_statustext_decode(&msg, &packet); const uint8_t max_prefix_len = 20; const uint8_t text_len = MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1+max_prefix_len; char text[text_len] = { 'G','C','S',':'}; uint8_t offset = strlen(text); if (msg.sysid != sysid_my_gcs()) { offset = hal.util->snprintf(text, max_prefix_len, "SRC=%u/%u:", msg.sysid, msg.compid); offset = MIN(offset, max_prefix_len); } memcpy(&text[offset], packet.text, MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN); logger->Write_Message(text); } void GCS_MAVLINK::handle_system_time_message(const mavlink_message_t &msg) { mavlink_system_time_t packet; mavlink_msg_system_time_decode(&msg, &packet); AP::rtc().set_utc_usec(packet.time_unix_usec, AP_RTC::SOURCE_MAVLINK_SYSTEM_TIME); } MAV_RESULT GCS_MAVLINK::handle_command_camera(const mavlink_command_long_t &packet) { AP_Camera *camera = AP::camera(); if (camera == nullptr) { return MAV_RESULT_UNSUPPORTED; } MAV_RESULT result = MAV_RESULT_FAILED; switch (packet.command) { case MAV_CMD_DO_DIGICAM_CONFIGURE: camera->configure(packet.param1, packet.param2, packet.param3, packet.param4, packet.param5, packet.param6, packet.param7); result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_DO_DIGICAM_CONTROL: camera->control(packet.param1, packet.param2, packet.param3, packet.param4, packet.param5, packet.param6); result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_DO_SET_CAM_TRIGG_DIST: camera->set_trigger_distance(packet.param1); result = MAV_RESULT_ACCEPTED; break; default: result = MAV_RESULT_UNSUPPORTED; break; } return result; } // sets ekf_origin if it has not been set. // should only be used when there is no GPS to provide an absolute position void GCS_MAVLINK::set_ekf_origin(const Location& loc) { // check location is valid if (!loc.check_latlng()) { return; } AP_AHRS &ahrs = AP::ahrs(); // check if EKF origin has already been set Location ekf_origin; if (ahrs.get_origin(ekf_origin)) { return; } if (!ahrs.set_origin(loc)) { return; } ahrs.Log_Write_Home_And_Origin(); // send ekf origin to GCS if (!try_send_message(MSG_ORIGIN)) { // try again later send_message(MSG_ORIGIN); } } void GCS_MAVLINK::handle_set_gps_global_origin(const mavlink_message_t &msg) { mavlink_set_gps_global_origin_t packet; mavlink_msg_set_gps_global_origin_decode(&msg, &packet); // sanity check location if (!check_latlng(packet.latitude, packet.longitude)) { // silently drop the request return; } Location ekf_origin {}; ekf_origin.lat = packet.latitude; ekf_origin.lng = packet.longitude; ekf_origin.alt = packet.altitude / 10; set_ekf_origin(ekf_origin); } /* handle a DATA96 message */ void GCS_MAVLINK::handle_data_packet(const mavlink_message_t &msg) { #if HAL_RCINPUT_WITH_AP_RADIO mavlink_data96_t m; mavlink_msg_data96_decode(&msg, &m); switch (m.type) { case 42: case 43: { // pass to AP_Radio (for firmware upload and playing test tunes) AP_Radio *radio = AP_Radio::get_singleton(); if (radio != nullptr) { radio->handle_data_packet(chan, m); } break; } default: // unknown break; } #endif } void GCS_MAVLINK::handle_vision_position_delta(const mavlink_message_t &msg) { AP_VisualOdom *visual_odom = AP::visualodom(); if (visual_odom == nullptr) { return; } visual_odom->handle_msg(msg); } void GCS_MAVLINK::handle_vision_position_estimate(const mavlink_message_t &msg) { mavlink_vision_position_estimate_t m; mavlink_msg_vision_position_estimate_decode(&msg, &m); handle_common_vision_position_estimate_data(m.usec, m.x, m.y, m.z, m.roll, m.pitch, m.yaw, PAYLOAD_SIZE(chan, VISION_POSITION_ESTIMATE)); } void GCS_MAVLINK::handle_global_vision_position_estimate(const mavlink_message_t &msg) { mavlink_global_vision_position_estimate_t m; mavlink_msg_global_vision_position_estimate_decode(&msg, &m); handle_common_vision_position_estimate_data(m.usec, m.x, m.y, m.z, m.roll, m.pitch, m.yaw, PAYLOAD_SIZE(chan, GLOBAL_VISION_POSITION_ESTIMATE)); } void GCS_MAVLINK::handle_vicon_position_estimate(const mavlink_message_t &msg) { mavlink_vicon_position_estimate_t m; mavlink_msg_vicon_position_estimate_decode(&msg, &m); handle_common_vision_position_estimate_data(m.usec, m.x, m.y, m.z, m.roll, m.pitch, m.yaw, PAYLOAD_SIZE(chan, VICON_POSITION_ESTIMATE)); } // there are several messages which all have identical fields in them. // This function provides common handling for the data contained in // these packets void GCS_MAVLINK::handle_common_vision_position_estimate_data(const uint64_t usec, const float x, const float y, const float z, const float roll, const float pitch, const float yaw, const uint16_t payload_size) { // correct offboard timestamp to be in local ms since boot uint32_t timestamp_ms = correct_offboard_timestamp_usec_to_ms(usec, payload_size); // sensor assumed to be at 0,0,0 body-frame; need parameters for this? // or a new message const Vector3f sensor_offset = {}; const Vector3f pos = { x, y, z }; Quaternion attitude; attitude.from_euler(roll, pitch, yaw); // from_vector312? const float posErr = 0; // parameter required? const float angErr = 0; // parameter required? const uint32_t reset_timestamp_ms = 0; // no data available AP::ahrs().writeExtNavData(sensor_offset, pos, attitude, posErr, angErr, timestamp_ms, reset_timestamp_ms); log_vision_position_estimate_data(usec, timestamp_ms, x, y, z, roll, pitch, yaw); } void GCS_MAVLINK::log_vision_position_estimate_data(const uint64_t usec, const uint32_t corrected_msec, const float x, const float y, const float z, const float roll, const float pitch, const float yaw) { AP::logger().Write("VISP", "TimeUS,RemTimeUS,CTimeMS,PX,PY,PZ,Roll,Pitch,Yaw", "sssmmmddh", "FFC000000", "QQIffffff", (uint64_t)AP_HAL::micros64(), (uint64_t)usec, corrected_msec, (double)x, (double)y, (double)z, (double)(roll * RAD_TO_DEG), (double)(pitch * RAD_TO_DEG), (double)(yaw * RAD_TO_DEG)); } void GCS_MAVLINK::handle_att_pos_mocap(const mavlink_message_t &msg) { mavlink_att_pos_mocap_t m; mavlink_msg_att_pos_mocap_decode(&msg, &m); // sensor assumed to be at 0,0,0 body-frame; need parameters for this? const Vector3f sensor_offset = {}; const Vector3f pos = { m.x, m.y, m.z }; Quaternion attitude = Quaternion(m.q); const float posErr = 0; // parameter required? const float angErr = 0; // parameter required? // correct offboard timestamp to be in local ms since boot uint32_t timestamp_ms = correct_offboard_timestamp_usec_to_ms(m.time_usec, PAYLOAD_SIZE(chan, ATT_POS_MOCAP)); const uint32_t reset_timestamp_ms = 0; // no data available AP::ahrs().writeExtNavData(sensor_offset, pos, attitude, posErr, angErr, timestamp_ms, reset_timestamp_ms); // calculate euler orientation for logging float roll; float pitch; float yaw; attitude.to_euler(roll, pitch, yaw); log_vision_position_estimate_data(m.time_usec, timestamp_ms, m.x, m.y, m.z, roll, pitch, yaw); } void GCS_MAVLINK::handle_command_ack(const mavlink_message_t &msg) { AP_AccelCal *accelcal = AP::ins().get_acal(); if (accelcal != nullptr) { accelcal->handleMessage(msg); } } // allow override of RC channel values for HIL or for complete GCS // control of switch position and RC PWM values. void GCS_MAVLINK::handle_rc_channels_override(const mavlink_message_t &msg) { if(msg.sysid != sysid_my_gcs()) { return; // Only accept control from our gcs } const uint32_t tnow = AP_HAL::millis(); mavlink_rc_channels_override_t packet; mavlink_msg_rc_channels_override_decode(&msg, &packet); const uint16_t override_data[] = { packet.chan1_raw, packet.chan2_raw, packet.chan3_raw, packet.chan4_raw, packet.chan5_raw, packet.chan6_raw, packet.chan7_raw, packet.chan8_raw, packet.chan9_raw, packet.chan10_raw, packet.chan11_raw, packet.chan12_raw, packet.chan13_raw, packet.chan14_raw, packet.chan15_raw, packet.chan16_raw }; for (uint8_t i=0; ihandle_msg(msg); } /* handle messages which don't require vehicle specific data */ void GCS_MAVLINK::handle_common_message(const mavlink_message_t &msg) { switch (msg.msgid) { case MAVLINK_MSG_ID_COMMAND_ACK: { handle_command_ack(msg); break; } case MAVLINK_MSG_ID_SETUP_SIGNING: handle_setup_signing(msg); break; case MAVLINK_MSG_ID_PARAM_REQUEST_LIST: case MAVLINK_MSG_ID_PARAM_SET: case MAVLINK_MSG_ID_PARAM_REQUEST_READ: handle_common_param_message(msg); break; case MAVLINK_MSG_ID_SET_GPS_GLOBAL_ORIGIN: handle_set_gps_global_origin(msg); break; case MAVLINK_MSG_ID_DEVICE_OP_READ: handle_device_op_read(msg); break; case MAVLINK_MSG_ID_DEVICE_OP_WRITE: handle_device_op_write(msg); break; case MAVLINK_MSG_ID_TIMESYNC: handle_timesync(msg); break; case MAVLINK_MSG_ID_LOG_REQUEST_LIST: case MAVLINK_MSG_ID_LOG_REQUEST_DATA: case MAVLINK_MSG_ID_LOG_ERASE: case MAVLINK_MSG_ID_LOG_REQUEST_END: case MAVLINK_MSG_ID_REMOTE_LOG_BLOCK_STATUS: AP::logger().handle_mavlink_msg(*this, msg); break; case MAVLINK_MSG_ID_DIGICAM_CONTROL: { AP_Camera *camera = AP::camera(); if (camera == nullptr) { return; } camera->control_msg(msg); } break; case MAVLINK_MSG_ID_SET_MODE: handle_set_mode(msg); break; case MAVLINK_MSG_ID_AUTOPILOT_VERSION_REQUEST: handle_send_autopilot_version(msg); break; case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST: case MAVLINK_MSG_ID_MISSION_REQUEST_LIST: case MAVLINK_MSG_ID_MISSION_COUNT: case MAVLINK_MSG_ID_MISSION_CLEAR_ALL: case MAVLINK_MSG_ID_MISSION_ITEM: case MAVLINK_MSG_ID_MISSION_ITEM_INT: case MAVLINK_MSG_ID_MISSION_REQUEST_INT: case MAVLINK_MSG_ID_MISSION_REQUEST: case MAVLINK_MSG_ID_MISSION_ACK: case MAVLINK_MSG_ID_MISSION_SET_CURRENT: handle_common_mission_message(msg); break; case MAVLINK_MSG_ID_COMMAND_LONG: handle_command_long(msg); break; case MAVLINK_MSG_ID_COMMAND_INT: handle_command_int(msg); break; case MAVLINK_MSG_ID_FENCE_POINT: case MAVLINK_MSG_ID_FENCE_FETCH_POINT: handle_fence_message(msg); break; case MAVLINK_MSG_ID_GIMBAL_REPORT: handle_mount_message(msg); break; case MAVLINK_MSG_ID_PARAM_VALUE: handle_param_value(msg); break; case MAVLINK_MSG_ID_SERIAL_CONTROL: handle_serial_control(msg); break; case MAVLINK_MSG_ID_GPS_RTCM_DATA: case MAVLINK_MSG_ID_GPS_INPUT: case MAVLINK_MSG_ID_HIL_GPS: case MAVLINK_MSG_ID_GPS_INJECT_DATA: AP::gps().handle_msg(msg); break; case MAVLINK_MSG_ID_STATUSTEXT: handle_statustext(msg); break; case MAVLINK_MSG_ID_LED_CONTROL: // send message to Notify AP_Notify::handle_led_control(msg); break; case MAVLINK_MSG_ID_MOUNT_CONFIGURE: // deprecated. Use MAV_CMD_DO_MOUNT_CONFIGURE case MAVLINK_MSG_ID_MOUNT_CONTROL: // deprecated. Use MAV_CMD_DO_MOUNT_CONTROL handle_mount_message(msg); break; case MAVLINK_MSG_ID_PLAY_TUNE: // send message to Notify AP_Notify::handle_play_tune(msg); break; case MAVLINK_MSG_ID_RALLY_POINT: case MAVLINK_MSG_ID_RALLY_FETCH_POINT: handle_common_rally_message(msg); break; case MAVLINK_MSG_ID_REQUEST_DATA_STREAM: handle_request_data_stream(msg); break; case MAVLINK_MSG_ID_DATA96: handle_data_packet(msg); break; case MAVLINK_MSG_ID_VISION_POSITION_DELTA: handle_vision_position_delta(msg); break; case MAVLINK_MSG_ID_VISION_POSITION_ESTIMATE: handle_vision_position_estimate(msg); break; case MAVLINK_MSG_ID_GLOBAL_VISION_POSITION_ESTIMATE: handle_global_vision_position_estimate(msg); break; case MAVLINK_MSG_ID_VICON_POSITION_ESTIMATE: handle_vicon_position_estimate(msg); break; case MAVLINK_MSG_ID_ATT_POS_MOCAP: handle_att_pos_mocap(msg); break; case MAVLINK_MSG_ID_SYSTEM_TIME: handle_system_time_message(msg); break; case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: handle_rc_channels_override(msg); break; case MAVLINK_MSG_ID_OPTICAL_FLOW: handle_optical_flow(msg); break; } } void GCS_MAVLINK::handle_common_mission_message(const mavlink_message_t &msg) { AP_Mission *_mission = AP::mission(); if (_mission == nullptr) { return; } switch (msg.msgid) { case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST: // MAV ID: 38 { handle_mission_write_partial_list(msg); break; } // GCS has sent us a mission item, store to EEPROM case MAVLINK_MSG_ID_MISSION_ITEM: // MAV ID: 39 case MAVLINK_MSG_ID_MISSION_ITEM_INT: handle_mission_item(msg); break; // read an individual command from EEPROM and send it to the GCS case MAVLINK_MSG_ID_MISSION_REQUEST_INT: handle_mission_request_int(msg); break; case MAVLINK_MSG_ID_MISSION_REQUEST: handle_mission_request(msg); break; case MAVLINK_MSG_ID_MISSION_SET_CURRENT: // MAV ID: 41 { handle_mission_set_current(*_mission, msg); break; } // GCS request the full list of commands, we return just the number and leave the GCS to then request each command individually case MAVLINK_MSG_ID_MISSION_REQUEST_LIST: // MAV ID: 43 { handle_mission_request_list(msg); break; } // GCS provides the full number of commands it wishes to upload // individual commands will then be sent from the GCS using the MAVLINK_MSG_ID_MISSION_ITEM message case MAVLINK_MSG_ID_MISSION_COUNT: // MAV ID: 44 { handle_mission_count(msg); break; } case MAVLINK_MSG_ID_MISSION_CLEAR_ALL: // MAV ID: 45 { handle_mission_clear_all(msg); break; } case MAVLINK_MSG_ID_MISSION_ACK: /* not used */ break; } } void GCS_MAVLINK::handle_send_autopilot_version(const mavlink_message_t &msg) { send_message(MSG_AUTOPILOT_VERSION); } void GCS_MAVLINK::send_banner() { // mark the firmware version in the tlog const AP_FWVersion &fwver = AP::fwversion(); send_text(MAV_SEVERITY_INFO, "%s", fwver.fw_string); if (fwver.middleware_name && fwver.os_name) { send_text(MAV_SEVERITY_INFO, "%s: %s %s: %s", fwver.middleware_name, fwver.middleware_hash_str, fwver.os_name, fwver.os_hash_str); } else if (fwver.os_name) { send_text(MAV_SEVERITY_INFO, "%s: %s", fwver.os_name, fwver.os_hash_str); } // send system ID if we can char sysid[40]; if (hal.util->get_system_id(sysid)) { send_text(MAV_SEVERITY_INFO, "%s", sysid); } } void GCS_MAVLINK::send_simstate() const { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL SITL::SITL *sitl = AP::sitl(); if (sitl == nullptr) { return; } sitl->simstate_send(get_chan()); #endif } MAV_RESULT GCS_MAVLINK::handle_command_flash_bootloader(const mavlink_command_long_t &packet) { if (uint32_t(packet.param5) != 290876) { gcs().send_text(MAV_SEVERITY_INFO, "Magic not set"); return MAV_RESULT_FAILED; } if (!hal.util->flash_bootloader()) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK::handle_command_preflight_set_sensor_offsets(const mavlink_command_long_t &packet) { Compass &compass = AP::compass(); uint8_t compassNumber = -1; if (is_equal(packet.param1, 2.0f)) { compassNumber = 0; } else if (is_equal(packet.param1, 5.0f)) { compassNumber = 1; } else if (is_equal(packet.param1, 6.0f)) { compassNumber = 2; } if (compassNumber == (uint8_t) -1) { return MAV_RESULT_FAILED; } compass.set_and_save_offsets(compassNumber, Vector3f(packet.param2, packet.param3, packet.param4)); return MAV_RESULT_ACCEPTED; } bool GCS_MAVLINK::calibrate_gyros() { AP::ins().init_gyro(); if (!AP::ins().gyro_calibrated_ok_all()) { return false; } AP::ahrs().reset_gyro_drift(); return true; } MAV_RESULT GCS_MAVLINK::_handle_command_preflight_calibration_baro() { // fast barometer calibration gcs().send_text(MAV_SEVERITY_INFO, "Updating barometer calibration"); AP::baro().update_calibration(); gcs().send_text(MAV_SEVERITY_INFO, "Barometer calibration complete"); AP_Airspeed *airspeed = AP_Airspeed::get_singleton(); if (airspeed != nullptr) { airspeed->calibrate(false); } return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK::_handle_command_preflight_calibration(const mavlink_command_long_t &packet) { EXPECT_DELAY_MS(30000); if (is_equal(packet.param1,1.0f)) { if (!calibrate_gyros()) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } if (is_equal(packet.param3,1.0f)) { return _handle_command_preflight_calibration_baro(); } if (is_equal(packet.param5,1.0f)) { // start with gyro calibration if (!calibrate_gyros()) { return MAV_RESULT_FAILED; } // start accel cal AP::ins().acal_init(); AP::ins().get_acal()->start(this); return MAV_RESULT_ACCEPTED; } if (is_equal(packet.param5,2.0f)) { if (!calibrate_gyros()) { return MAV_RESULT_FAILED; } float trim_roll, trim_pitch; if (!AP::ins().calibrate_trim(trim_roll, trim_pitch)) { return MAV_RESULT_FAILED; } // reset ahrs's trim to suggested values from calibration routine AP::ahrs().set_trim(Vector3f(trim_roll, trim_pitch, 0)); return MAV_RESULT_ACCEPTED; } if (is_equal(packet.param5,4.0f)) { // simple accel calibration return AP::ins().simple_accel_cal(); } return MAV_RESULT_UNSUPPORTED; } MAV_RESULT GCS_MAVLINK::handle_command_preflight_calibration(const mavlink_command_long_t &packet) { if (hal.util->get_soft_armed()) { // *preflight*, remember? return MAV_RESULT_FAILED; } // now call subclass methods: return _handle_command_preflight_calibration(packet); } MAV_RESULT GCS_MAVLINK::handle_command_preflight_can(const mavlink_command_long_t &packet) { #if HAL_WITH_UAVCAN if (hal.util->get_soft_armed()) { // *preflight*, remember? return MAV_RESULT_TEMPORARILY_REJECTED; } bool start_stop = is_equal(packet.param1,1.0f) ? true : false; bool result = true; bool can_exists = false; uint8_t num_drivers = AP::can().get_num_drivers(); for (uint8_t i = 0; i < num_drivers; i++) { switch (AP::can().get_protocol_type(i)) { case AP_BoardConfig_CAN::Protocol_Type_KDECAN: { // To be replaced with macro saying if KDECAN library is included #if APM_BUILD_TYPE(APM_BUILD_ArduCopter) || APM_BUILD_TYPE(APM_BUILD_ArduPlane) || APM_BUILD_TYPE(APM_BUILD_ArduSub) AP_KDECAN *ap_kdecan = AP_KDECAN::get_kdecan(i); if (ap_kdecan != nullptr) { can_exists = true; result = ap_kdecan->run_enumeration(start_stop) && result; } break; #else UNUSED_RESULT(start_stop); // prevent unused variable error #endif } case AP_BoardConfig_CAN::Protocol_Type_UAVCAN: case AP_BoardConfig_CAN::Protocol_Type_None: default: break; } } MAV_RESULT ack = MAV_RESULT_DENIED; if (can_exists) { ack = result ? MAV_RESULT_ACCEPTED : MAV_RESULT_FAILED; } return ack; #else return MAV_RESULT_UNSUPPORTED; #endif } MAV_RESULT GCS_MAVLINK::handle_command_battery_reset(const mavlink_command_long_t &packet) { const uint16_t battery_mask = packet.param1; const float percentage = packet.param2; if (AP::battery().reset_remaining(battery_mask, percentage)) { return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } MAV_RESULT GCS_MAVLINK::handle_command_mag_cal(const mavlink_command_long_t &packet) { return AP::compass().handle_mag_cal_command(packet); } MAV_RESULT GCS_MAVLINK::handle_command_request_autopilot_capabilities(const mavlink_command_long_t &packet) { if (!is_equal(packet.param1,1.0f)) { return MAV_RESULT_FAILED; } send_message(MSG_AUTOPILOT_VERSION); return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK::handle_command_do_send_banner(const mavlink_command_long_t &packet) { send_banner(); return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK::handle_command_do_set_mode(const mavlink_command_long_t &packet) { const MAV_MODE _base_mode = (MAV_MODE)packet.param1; const uint32_t _custom_mode = (uint32_t)packet.param2; return _set_mode_common(_base_mode, _custom_mode); } MAV_RESULT GCS_MAVLINK::handle_command_get_home_position(const mavlink_command_long_t &packet) { if (!AP::ahrs().home_is_set()) { return MAV_RESULT_FAILED; } if (!try_send_message(MSG_HOME)) { // try again later send_message(MSG_HOME); } if (!try_send_message(MSG_ORIGIN)) { // try again later send_message(MSG_ORIGIN); } return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK::handle_command_do_gripper(const mavlink_command_long_t &packet) { AP_Gripper *gripper = AP::gripper(); if (gripper == nullptr) { return MAV_RESULT_FAILED; } // param1 : gripper number (ignored) // param2 : action (0=release, 1=grab). See GRIPPER_ACTIONS enum. if(!gripper->enabled()) { return MAV_RESULT_FAILED; } MAV_RESULT result = MAV_RESULT_ACCEPTED; switch ((uint8_t)packet.param2) { case GRIPPER_ACTION_RELEASE: gripper->release(); break; case GRIPPER_ACTION_GRAB: gripper->grab(); break; default: result = MAV_RESULT_FAILED; break; } return result; } MAV_RESULT GCS_MAVLINK::handle_command_accelcal_vehicle_pos(const mavlink_command_long_t &packet) { if (!AP::ins().get_acal()->gcs_vehicle_position(packet.param1)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK::handle_command_mount(const mavlink_command_long_t &packet) { AP_Mount *mount = AP::mount(); if (mount == nullptr) { return MAV_RESULT_UNSUPPORTED; } return mount->handle_command_long(packet); } MAV_RESULT GCS_MAVLINK::handle_command_do_set_home(const mavlink_command_long_t &packet) { if (is_equal(packet.param1, 1.0f) || (is_zero(packet.param5) && is_zero(packet.param6))) { // param1 is 1 (or both lat and lon are zero); use current location if (!set_home_to_current_location(true)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } // ensure param1 is zero if (!is_zero(packet.param1)) { return MAV_RESULT_FAILED; } Location new_home_loc; new_home_loc.lat = (int32_t)(packet.param5 * 1.0e7f); new_home_loc.lng = (int32_t)(packet.param6 * 1.0e7f); new_home_loc.alt = (int32_t)(packet.param7 * 100.0f); if (!set_home(new_home_loc, true)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK::handle_command_long_packet(const mavlink_command_long_t &packet) { MAV_RESULT result = MAV_RESULT_FAILED; switch (packet.command) { case MAV_CMD_ACCELCAL_VEHICLE_POS: result = handle_command_accelcal_vehicle_pos(packet); break; case MAV_CMD_DO_SET_MODE: result = handle_command_do_set_mode(packet); break; case MAV_CMD_DO_SEND_BANNER: result = handle_command_do_send_banner(packet); break; case MAV_CMD_DO_SET_HOME: result = handle_command_do_set_home(packet); break; case MAV_CMD_DO_FENCE_ENABLE: result = handle_command_do_fence_enable(packet); break; case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN: result = handle_preflight_reboot(packet); break; case MAV_CMD_DO_START_MAG_CAL: case MAV_CMD_DO_ACCEPT_MAG_CAL: case MAV_CMD_DO_CANCEL_MAG_CAL: { result = handle_command_mag_cal(packet); break; } case MAV_CMD_START_RX_PAIR: result = handle_rc_bind(packet); break; case MAV_CMD_DO_DIGICAM_CONFIGURE: case MAV_CMD_DO_DIGICAM_CONTROL: case MAV_CMD_DO_SET_CAM_TRIGG_DIST: result = handle_command_camera(packet); break; case MAV_CMD_DO_GRIPPER: result = handle_command_do_gripper(packet); break; case MAV_CMD_DO_MOUNT_CONFIGURE: case MAV_CMD_DO_MOUNT_CONTROL: result = handle_command_mount(packet); break; case MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES: { result = handle_command_request_autopilot_capabilities(packet); break; } case MAV_CMD_DO_SET_ROI_LOCATION: case MAV_CMD_DO_SET_ROI: result = handle_command_do_set_roi(packet); break; case MAV_CMD_PREFLIGHT_CALIBRATION: result = handle_command_preflight_calibration(packet); break; case MAV_CMD_BATTERY_RESET: result = handle_command_battery_reset(packet); break; case MAV_CMD_PREFLIGHT_UAVCAN: result = handle_command_preflight_can(packet); break; case MAV_CMD_FLASH_BOOTLOADER: result = handle_command_flash_bootloader(packet); break; case MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS: { result = handle_command_preflight_set_sensor_offsets(packet); break; } case MAV_CMD_GET_HOME_POSITION: result = handle_command_get_home_position(packet); break; case MAV_CMD_PREFLIGHT_STORAGE: if (is_equal(packet.param1, 2.0f)) { AP_Param::erase_all(); send_text(MAV_SEVERITY_WARNING, "All parameters reset, reboot board"); result= MAV_RESULT_ACCEPTED; } break; case MAV_CMD_SET_MESSAGE_INTERVAL: result = handle_command_set_message_interval(packet); break; case MAV_CMD_GET_MESSAGE_INTERVAL: result = handle_command_get_message_interval(packet); break; case MAV_CMD_REQUEST_MESSAGE: result = handle_command_request_message(packet); break; case MAV_CMD_DO_SET_SERVO: case MAV_CMD_DO_REPEAT_SERVO: case MAV_CMD_DO_SET_RELAY: case MAV_CMD_DO_REPEAT_RELAY: result = handle_servorelay_message(packet); break; case MAV_CMD_DO_FLIGHTTERMINATION: result = handle_flight_termination(packet); break; case MAV_CMD_COMPONENT_ARM_DISARM: if (is_equal(packet.param1,1.0f)) { // run pre_arm_checks and arm_checks and display failures const bool do_arming_checks = !is_equal(packet.param2,magic_force_arm_value); if (AP::arming().is_armed() || AP::arming().arm(AP_Arming::Method::MAVLINK, do_arming_checks)) { return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } if (is_zero(packet.param1)) { if (!AP::arming().is_armed()) { return MAV_RESULT_ACCEPTED; } // allow vehicle to disallow disarm. Copter does this if // the vehicle isn't considered landed. if (!allow_disarm() && !is_equal(packet.param2, magic_force_disarm_value)) { return MAV_RESULT_FAILED; } if (AP::arming().disarm()) { return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } return MAV_RESULT_UNSUPPORTED; default: result = MAV_RESULT_UNSUPPORTED; break; } return result; } bool GCS_MAVLINK::command_long_stores_location(const MAV_CMD command) { switch(command) { case MAV_CMD_DO_SET_HOME: case MAV_CMD_DO_SET_ROI: case MAV_CMD_NAV_TAKEOFF: return true; default: return false; } return false; } void GCS_MAVLINK::convert_COMMAND_LONG_to_COMMAND_INT(const mavlink_command_long_t &in, mavlink_command_int_t &out) { out.target_system = in.target_system; out.target_component = in.target_component; out.frame = MAV_FRAME_GLOBAL_RELATIVE_ALT; // FIXME? out.command = in.command; out.current = 0; out.autocontinue = 0; out.param1 = in.param1; out.param2 = in.param2; out.param3 = in.param3; out.param4 = in.param4; if (command_long_stores_location((MAV_CMD)in.command)) { out.x = in.param5 *1e7; out.y = in.param6 *1e7; } else { out.x = in.param5; out.y = in.param6; } out.z = in.param7; } void GCS_MAVLINK::handle_command_long(const mavlink_message_t &msg) { // decode packet mavlink_command_long_t packet; mavlink_msg_command_long_decode(&msg, &packet); hal.util->persistent_data.last_mavlink_cmd = packet.command; const MAV_RESULT result = handle_command_long_packet(packet); // send ACK or NAK mavlink_msg_command_ack_send(chan, packet.command, result); // log the packet: mavlink_command_int_t packet_int; convert_COMMAND_LONG_to_COMMAND_INT(packet, packet_int); AP::logger().Write_Command(packet_int, result, true); hal.util->persistent_data.last_mavlink_cmd = 0; } MAV_RESULT GCS_MAVLINK::handle_command_do_set_roi(const Location &roi_loc) { AP_Mount *mount = AP::mount(); if (mount == nullptr) { return MAV_RESULT_UNSUPPORTED; } // sanity check location if (!roi_loc.check_latlng()) { return MAV_RESULT_FAILED; } if (roi_loc.lat == 0 && roi_loc.lng == 0 && roi_loc.alt == 0) { // switch off the camera tracking if enabled if (mount->get_mode() == MAV_MOUNT_MODE_GPS_POINT) { mount->set_mode_to_default(); } } else { // send the command to the camera mount mount->set_roi_target(roi_loc); } return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK::handle_command_int_do_set_home(const mavlink_command_int_t &packet) { if (is_equal(packet.param1, 1.0f) || (packet.x == 0 && packet.y == 0)) { // param1 is 1 (or both lat and lon are zero); use current location if (!set_home_to_current_location(true)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } // ensure param1 is zero if (!is_zero(packet.param1)) { return MAV_RESULT_FAILED; } Location::AltFrame frame; if (!mavlink_coordinate_frame_to_location_alt_frame((MAV_FRAME)packet.frame, frame)) { // unknown coordinate frame return MAV_RESULT_UNSUPPORTED; } const Location new_home_loc{ packet.x, packet.y, int32_t(packet.z * 100), frame, }; if (!set_home(new_home_loc, true)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK::handle_command_do_set_roi(const mavlink_command_int_t &packet) { // be aware that this method is called for both MAV_CMD_DO_SET_ROI // and MAV_CMD_DO_SET_ROI_LOCATION. If you intend to support any // of the extra fields in the former then you will need to split // off support for MAV_CMD_DO_SET_ROI_LOCATION (which doesn't // support the extra fields). // param1 : /* Region of interest mode (not used)*/ // param2 : /* MISSION index/ target ID (not used)*/ // param3 : /* ROI index (not used)*/ // param4 : /* empty */ // x : lat // y : lon // z : alt Location roi_loc; roi_loc.lat = packet.x; roi_loc.lng = packet.y; roi_loc.alt = (int32_t)(packet.z * 100.0f); return handle_command_do_set_roi(roi_loc); } MAV_RESULT GCS_MAVLINK::handle_command_do_set_roi(const mavlink_command_long_t &packet) { // be aware that this method is called for both MAV_CMD_DO_SET_ROI // and MAV_CMD_DO_SET_ROI_LOCATION. If you intend to support any // of the extra fields in the former then you will need to split // off support for MAV_CMD_DO_SET_ROI_LOCATION (which doesn't // support the extra fields). Location roi_loc; roi_loc.lat = (int32_t)(packet.param5 * 1.0e7f); roi_loc.lng = (int32_t)(packet.param6 * 1.0e7f); roi_loc.alt = (int32_t)(packet.param7 * 100.0f); return handle_command_do_set_roi(roi_loc); } MAV_RESULT GCS_MAVLINK::handle_command_int_packet(const mavlink_command_int_t &packet) { switch (packet.command) { case MAV_CMD_DO_SET_ROI: case MAV_CMD_DO_SET_ROI_LOCATION: return handle_command_do_set_roi(packet); case MAV_CMD_DO_SET_HOME: return handle_command_int_do_set_home(packet); default: break; } return MAV_RESULT_UNSUPPORTED; } void GCS_MAVLINK::handle_command_int(const mavlink_message_t &msg) { // decode packet mavlink_command_int_t packet; mavlink_msg_command_int_decode(&msg, &packet); hal.util->persistent_data.last_mavlink_cmd = packet.command; const MAV_RESULT result = handle_command_int_packet(packet); // send ACK or NAK mavlink_msg_command_ack_send(chan, packet.command, result); AP::logger().Write_Command(packet, result); hal.util->persistent_data.last_mavlink_cmd = 0; } void GCS::try_send_queued_message_for_type(MAV_MISSION_TYPE type) { MissionItemProtocol *prot = get_prot_for_mission_type(type); if (prot == nullptr) { return; } prot->queued_request_send(); } bool GCS_MAVLINK::try_send_mission_message(const enum ap_message id) { AP_Mission *mission = AP::mission(); if (mission == nullptr) { return true; } bool ret = true; switch (id) { case MSG_CURRENT_WAYPOINT: CHECK_PAYLOAD_SIZE(MISSION_CURRENT); mavlink_msg_mission_current_send(chan, mission->get_current_nav_index()); ret = true; break; case MSG_MISSION_ITEM_REACHED: CHECK_PAYLOAD_SIZE(MISSION_ITEM_REACHED); mavlink_msg_mission_item_reached_send(chan, mission_item_reached_index); ret = true; break; case MSG_NEXT_MISSION_REQUEST_WAYPOINTS: CHECK_PAYLOAD_SIZE(MISSION_REQUEST); gcs().try_send_queued_message_for_type(MAV_MISSION_TYPE_MISSION); ret = true; break; case MSG_NEXT_MISSION_REQUEST_RALLY: CHECK_PAYLOAD_SIZE(MISSION_REQUEST); gcs().try_send_queued_message_for_type(MAV_MISSION_TYPE_RALLY); ret = true; break; default: ret = true; break; } return ret; } void GCS_MAVLINK::send_hwstatus() { mavlink_msg_hwstatus_send( chan, hal.analogin->board_voltage()*1000, 0); } void GCS_MAVLINK::send_rpm() const { AP_RPM *rpm = AP::rpm(); if (rpm == nullptr) { return; } if (!rpm->enabled(0) && !rpm->enabled(1)) { return; } mavlink_msg_rpm_send( chan, rpm->get_rpm(0), rpm->get_rpm(1)); } void GCS_MAVLINK::send_sys_status() { // send extended status only once vehicle has been initialised // to avoid unnecessary errors being reported to user if (!gcs().vehicle_initialised()) { return; } const AP_BattMonitor &battery = AP::battery(); float battery_current; int8_t battery_remaining; if (battery.healthy() && battery.current_amps(battery_current)) { battery_remaining = get_battery_remaining_percentage(); battery_current *= 100; } else { battery_current = -1; battery_remaining = -1; } uint32_t control_sensors_present; uint32_t control_sensors_enabled; uint32_t control_sensors_health; gcs().get_sensor_status_flags(control_sensors_present, control_sensors_enabled, control_sensors_health); const uint32_t errors = AP::internalerror().errors(); const uint16_t errors1 = errors & 0xffff; const uint16_t errors2 = (errors>>16) & 0xffff; const uint16_t errors4 = AP::internalerror().count() & 0xffff; mavlink_msg_sys_status_send( chan, control_sensors_present, control_sensors_enabled, control_sensors_health, static_cast(AP::scheduler().load_average() * 1000), battery.voltage() * 1000, // mV battery_current, // in 10mA units battery_remaining, // in % 0, // comm drops %, 0, // comm drops in pkts, errors1, errors2, 0, // errors3 errors4); // errors4 } void GCS_MAVLINK::send_extended_sys_state() const { mavlink_msg_extended_sys_state_send(chan, vtol_state(), landed_state()); } void GCS_MAVLINK::send_attitude() const { const AP_AHRS &ahrs = AP::ahrs(); const Vector3f omega = ahrs.get_gyro(); mavlink_msg_attitude_send( chan, AP_HAL::millis(), ahrs.roll, ahrs.pitch, ahrs.yaw, omega.x, omega.y, omega.z); } int32_t GCS_MAVLINK::global_position_int_alt() const { return global_position_current_loc.alt * 10UL; } int32_t GCS_MAVLINK::global_position_int_relative_alt() const { float posD; AP::ahrs().get_relative_position_D_home(posD); posD *= -1000.0f; // change from down to up and metres to millimeters return posD; } void GCS_MAVLINK::send_global_position_int() { AP_AHRS &ahrs = AP::ahrs(); ahrs.get_position(global_position_current_loc); // return value ignored; we send stale data Vector3f vel; if (!ahrs.get_velocity_NED(vel)) { vel.zero(); } mavlink_msg_global_position_int_send( chan, AP_HAL::millis(), global_position_current_loc.lat, // in 1E7 degrees global_position_current_loc.lng, // in 1E7 degrees global_position_int_alt(), // millimeters above ground/sea level global_position_int_relative_alt(), // millimeters above home vel.x * 100, // X speed cm/s (+ve North) vel.y * 100, // Y speed cm/s (+ve East) vel.z * 100, // Z speed cm/s (+ve Down) ahrs.yaw_sensor); // compass heading in 1/100 degree } void GCS_MAVLINK::send_gimbal_report() const { AP_Mount *mount = AP::mount(); if (mount == nullptr) { return; } mount->send_gimbal_report(chan); } void GCS_MAVLINK::send_mount_status() const { AP_Mount *mount = AP::mount(); if (mount == nullptr) { return; } mount->send_mount_status(chan); } void GCS_MAVLINK::send_set_position_target_global_int(uint8_t target_system, uint8_t target_component, const Location& loc) { const uint16_t type_mask = POSITION_TARGET_TYPEMASK_VX_IGNORE | POSITION_TARGET_TYPEMASK_VY_IGNORE | POSITION_TARGET_TYPEMASK_VZ_IGNORE | \ POSITION_TARGET_TYPEMASK_AX_IGNORE | POSITION_TARGET_TYPEMASK_AY_IGNORE | POSITION_TARGET_TYPEMASK_AZ_IGNORE | \ POSITION_TARGET_TYPEMASK_YAW_IGNORE | POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE; // convert altitude to relative to home int32_t rel_alt; if (!loc.get_alt_cm(Location::AltFrame::ABOVE_HOME, rel_alt)) { return; } mavlink_msg_set_position_target_global_int_send( chan, AP_HAL::millis(), target_system, target_component, MAV_FRAME_GLOBAL_RELATIVE_ALT_INT, type_mask, loc.lat, loc.lng, rel_alt, 0,0,0, // vx, vy, vz 0,0,0, // ax, ay, az 0,0); // yaw, yaw_rate } bool GCS_MAVLINK::try_send_message(const enum ap_message id) { bool ret = true; switch(id) { case MSG_ROV_STATE_MONITORING: mavlink_msg_rov_state_monitoring_send_struct(chan,&rov_message); break; case MSG_SET_SLAVE_PARAMETER: mavlink_msg_set_slave_parameter_send_struct(chan,&get_stm32_param); break; case MSG_MOTOR_SPEED: mavlink_msg_motor_speed_send_struct(chan,&mav_motor_speed_back); break; case MSG_HV_REG_GET: mavlink_msg_hv_reg_get_send_struct(chan,&hv_reg_get); break; case MSG_ATTITUDE: CHECK_PAYLOAD_SIZE(ATTITUDE); send_attitude(); break; case MSG_NEXT_PARAM: CHECK_PAYLOAD_SIZE(PARAM_VALUE); queued_param_send(); break; case MSG_GIMBAL_REPORT: CHECK_PAYLOAD_SIZE(GIMBAL_REPORT); send_gimbal_report(); break; case MSG_HEARTBEAT: CHECK_PAYLOAD_SIZE(HEARTBEAT); last_heartbeat_time = AP_HAL::millis(); send_heartbeat(); break; case MSG_HWSTATUS: CHECK_PAYLOAD_SIZE(HWSTATUS); send_hwstatus(); break; case MSG_LOCATION: CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT); send_global_position_int(); break; case MSG_HOME: CHECK_PAYLOAD_SIZE(HOME_POSITION); send_home_position(); break; case MSG_ORIGIN: CHECK_PAYLOAD_SIZE(GPS_GLOBAL_ORIGIN); send_gps_global_origin(); break; case MSG_RPM: CHECK_PAYLOAD_SIZE(RPM); send_rpm(); break; case MSG_CURRENT_WAYPOINT: case MSG_MISSION_ITEM_REACHED: case MSG_NEXT_MISSION_REQUEST_WAYPOINTS: case MSG_NEXT_MISSION_REQUEST_RALLY: ret = try_send_mission_message(id); break; case MSG_MAG_CAL_PROGRESS: ret = AP::compass().send_mag_cal_progress(*this); break; case MSG_MAG_CAL_REPORT: ret = AP::compass().send_mag_cal_report(*this); break; case MSG_BATTERY_STATUS: send_battery_status(); break; case MSG_BATTERY2: CHECK_PAYLOAD_SIZE(BATTERY2); send_battery2(); break; case MSG_EKF_STATUS_REPORT: #if AP_AHRS_NAVEKF_AVAILABLE CHECK_PAYLOAD_SIZE(EKF_STATUS_REPORT); AP::ahrs_navekf().send_ekf_status_report(chan); #endif break; case MSG_MEMINFO: CHECK_PAYLOAD_SIZE(MEMINFO); send_meminfo(); break; case MSG_FENCE_STATUS: CHECK_PAYLOAD_SIZE(FENCE_STATUS); send_fence_status(); break; case MSG_RANGEFINDER: CHECK_PAYLOAD_SIZE(RANGEFINDER); send_rangefinder(); break; case MSG_DISTANCE_SENSOR: send_distance_sensor(); break; case MSG_CAMERA_FEEDBACK: { AP_Camera *camera = AP::camera(); if (camera == nullptr) { break; } CHECK_PAYLOAD_SIZE(CAMERA_FEEDBACK); camera->send_feedback(chan); } break; case MSG_SYSTEM_TIME: CHECK_PAYLOAD_SIZE(SYSTEM_TIME); send_system_time(); break; case MSG_GPS_RAW: CHECK_PAYLOAD_SIZE(GPS_RAW_INT); AP::gps().send_mavlink_gps_raw(chan); break; case MSG_GPS_RTK: CHECK_PAYLOAD_SIZE(GPS_RTK); AP::gps().send_mavlink_gps_rtk(chan, 0); break; case MSG_GPS2_RAW: CHECK_PAYLOAD_SIZE(GPS2_RAW); AP::gps().send_mavlink_gps2_raw(chan); break; case MSG_GPS2_RTK: CHECK_PAYLOAD_SIZE(GPS2_RTK); AP::gps().send_mavlink_gps_rtk(chan, 1); break; case MSG_LOCAL_POSITION: CHECK_PAYLOAD_SIZE(LOCAL_POSITION_NED); send_local_position(); break; case MSG_MOUNT_STATUS: CHECK_PAYLOAD_SIZE(MOUNT_STATUS); send_mount_status(); break; case MSG_OPTICAL_FLOW: CHECK_PAYLOAD_SIZE(OPTICAL_FLOW); send_opticalflow(); break; case MSG_POSITION_TARGET_GLOBAL_INT: CHECK_PAYLOAD_SIZE(POSITION_TARGET_GLOBAL_INT); send_position_target_global_int(); break; case MSG_POSITION_TARGET_LOCAL_NED: CHECK_PAYLOAD_SIZE(POSITION_TARGET_LOCAL_NED); send_position_target_local_ned(); break; case MSG_POWER_STATUS: CHECK_PAYLOAD_SIZE(POWER_STATUS); send_power_status(); break; case MSG_RC_CHANNELS: CHECK_PAYLOAD_SIZE(RC_CHANNELS); send_rc_channels(); break; case MSG_RC_CHANNELS_RAW: CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW); send_rc_channels_raw(); break; case MSG_RAW_IMU: CHECK_PAYLOAD_SIZE(RAW_IMU); send_raw_imu(); break; case MSG_SCALED_IMU: CHECK_PAYLOAD_SIZE(SCALED_IMU); send_scaled_imu(0, mavlink_msg_scaled_imu_send); break; case MSG_SCALED_IMU2: CHECK_PAYLOAD_SIZE(SCALED_IMU2); send_scaled_imu(1, mavlink_msg_scaled_imu2_send); break; case MSG_SCALED_IMU3: CHECK_PAYLOAD_SIZE(SCALED_IMU3); send_scaled_imu(2, mavlink_msg_scaled_imu3_send); break; case MSG_SCALED_PRESSURE: CHECK_PAYLOAD_SIZE(SCALED_PRESSURE); send_scaled_pressure(); break; case MSG_SCALED_PRESSURE2: CHECK_PAYLOAD_SIZE(SCALED_PRESSURE2); send_scaled_pressure2(); break; case MSG_SCALED_PRESSURE3: CHECK_PAYLOAD_SIZE(SCALED_PRESSURE3); send_scaled_pressure3(); break; case MSG_SENSOR_OFFSETS: CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS); send_sensor_offsets(); break; case MSG_SERVO_OUTPUT_RAW: CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW); send_servo_output_raw(); break; case MSG_SIMSTATE: CHECK_PAYLOAD_SIZE(SIMSTATE); send_simstate(); break; case MSG_SYS_STATUS: CHECK_PAYLOAD_SIZE(SYS_STATUS); send_sys_status(); break; case MSG_AHRS2: CHECK_PAYLOAD_SIZE(AHRS2); send_ahrs2(); break; case MSG_AHRS3: CHECK_PAYLOAD_SIZE(AHRS3); send_ahrs3(); break; case MSG_PID_TUNING: CHECK_PAYLOAD_SIZE(PID_TUNING); send_pid_tuning(); break; case MSG_NAV_CONTROLLER_OUTPUT: CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT); send_nav_controller_output(); break; case MSG_AHRS: CHECK_PAYLOAD_SIZE(AHRS); send_ahrs(); break; case MSG_EXTENDED_SYS_STATE: CHECK_PAYLOAD_SIZE(EXTENDED_SYS_STATE); send_extended_sys_state(); break; case MSG_VFR_HUD: CHECK_PAYLOAD_SIZE(VFR_HUD); send_vfr_hud(); break; case MSG_VIBRATION: CHECK_PAYLOAD_SIZE(VIBRATION); send_vibration(); break; case MSG_AUTOPILOT_VERSION: CHECK_PAYLOAD_SIZE(AUTOPILOT_VERSION); send_autopilot_version(); break; case MSG_ESC_TELEMETRY: { #ifdef HAVE_AP_BLHELI_SUPPORT CHECK_PAYLOAD_SIZE(ESC_TELEMETRY_1_TO_4); AP_BLHeli *blheli = AP_BLHeli::get_singleton(); if (blheli) { blheli->send_esc_telemetry_mavlink(uint8_t(chan)); } #endif #if HAL_WITH_UAVCAN uint8_t num_drivers = AP::can().get_num_drivers(); for (uint8_t i = 0; i < num_drivers; i++) { switch (AP::can().get_protocol_type(i)) { case AP_BoardConfig_CAN::Protocol_Type_KDECAN: { // To be replaced with macro saying if KDECAN library is included #if APM_BUILD_TYPE(APM_BUILD_ArduCopter) || APM_BUILD_TYPE(APM_BUILD_ArduPlane) || APM_BUILD_TYPE(APM_BUILD_ArduSub) AP_KDECAN *ap_kdecan = AP_KDECAN::get_kdecan(i); if (ap_kdecan != nullptr) { ap_kdecan->send_mavlink(uint8_t(chan)); } #endif break; } case AP_BoardConfig_CAN::Protocol_Type_ToshibaCAN: { AP_ToshibaCAN *ap_tcan = AP_ToshibaCAN::get_tcan(i); if (ap_tcan != nullptr) { ap_tcan->send_esc_telemetry_mavlink(uint8_t(chan)); } break; } case AP_BoardConfig_CAN::Protocol_Type_UAVCAN: case AP_BoardConfig_CAN::Protocol_Type_None: default: break; } } #endif break; } default: // try_send_message must always at some stage return true for // a message, or we will attempt to infinitely retry the // message as part of send_message. // This message will be sent out at the same rate as the // unknown message, so should be safe. gcs().send_text(MAV_SEVERITY_DEBUG, "Sending unknown message (%u)", id); #if CONFIG_HAL_BOARD == HAL_BOARD_SITL AP_HAL::panic("Sending unknown ap_message %u", id); #endif break; } return ret; } uint16_t GCS_MAVLINK::get_interval_for_stream(GCS_MAVLINK::streams id) const { const int16_t frate = streamRates[id].get(); if (frate == 0) { return 0; } const uint32_t ret = 1000/frate; if (ret > 60000) { return 60000; } return ret; } void GCS_MAVLINK::initialise_message_intervals_for_stream(GCS_MAVLINK::streams id) { for (uint8_t i=0; all_stream_entries[i].ap_message_ids != nullptr; i++) { const GCS_MAVLINK::stream_entries &entries = all_stream_entries[i]; if (entries.stream_id != id) { continue; } // found it! const uint16_t interval_ms = get_interval_for_stream(id); for (uint8_t j=0; jreceive_time_constraint_us(payload_size); if (uart_receive_time != 0) { local_us = uart_receive_time; } else { local_us = AP_HAL::micros64(); } uint64_t corrected_us = lag_correction.correct_offboard_timestamp_usec(offboard_usec, local_us); return corrected_us / 1000U; } /* return true if we will accept this packet. Used to implement SYSID_ENFORCE */ bool GCS_MAVLINK::accept_packet(const mavlink_status_t &status, const mavlink_message_t &msg) { if (msg.sysid == mavlink_system.sysid) { // accept packets from our own components // (e.g. mavlink-connected companion computers) return true; } if (msg.sysid == sysid_my_gcs()) { return true; } if (msg.msgid == MAVLINK_MSG_ID_RADIO || msg.msgid == MAVLINK_MSG_ID_RADIO_STATUS) { return true; } if (!sysid_enforce()) { return true; } return false; } /* update UART pass-thru, if enabled */ void GCS::update_passthru(void) { WITH_SEMAPHORE(_passthru.sem); uint32_t now = AP_HAL::millis(); bool enabled = AP::serialmanager().get_passthru(_passthru.port1, _passthru.port2, _passthru.timeout_s); if (enabled && !_passthru.enabled) { _passthru.start_ms = now; _passthru.last_ms = 0; _passthru.enabled = true; _passthru.last_port1_data_ms = now; gcs().send_text(MAV_SEVERITY_INFO, "Passthru enabled"); if (!_passthru.timer_installed) { _passthru.timer_installed = true; hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&GCS::passthru_timer, void)); } } else if (!enabled && _passthru.enabled) { _passthru.enabled = false; _passthru.port1->lock_port(0, 0); _passthru.port2->lock_port(0, 0); gcs().send_text(MAV_SEVERITY_INFO, "Passthru disabled"); } else if (enabled && _passthru.timeout_s && now - _passthru.last_port1_data_ms > uint32_t(_passthru.timeout_s)*1000U) { // timed out, disable _passthru.enabled = false; _passthru.port1->lock_port(0, 0); _passthru.port2->lock_port(0, 0); AP::serialmanager().disable_passthru(); gcs().send_text(MAV_SEVERITY_INFO, "Passthru timed out"); } } /* called at 1kHz to handle pass-thru between SERIA0_PASSTHRU port and hal.console */ void GCS::passthru_timer(void) { WITH_SEMAPHORE(_passthru.sem); if (!_passthru.enabled) { // it has been disabled after starting return; } if (_passthru.start_ms != 0) { uint32_t now = AP_HAL::millis(); if (now - _passthru.start_ms < 1000) { // delay for 1s so the reply for the SERIAL0_PASSTHRU param set can be seen by GCS return; } _passthru.start_ms = 0; } // while pass-thru is enabled lock both ports. They remain // locked until disabled again, or reboot const uint32_t lock_key = 0x3256AB9F; _passthru.port1->lock_port(lock_key, lock_key); _passthru.port2->lock_port(lock_key, lock_key); int16_t b; uint8_t buf[64]; uint8_t nbytes = 0; // read from port1, and write to port2 while (nbytes < sizeof(buf) && (b = _passthru.port1->read_locked(lock_key)) >= 0) { buf[nbytes++] = b; } if (nbytes > 0) { _passthru.last_port1_data_ms = AP_HAL::millis(); _passthru.port2->write_locked(buf, nbytes, lock_key); } // read from port2, and write to port1 nbytes = 0; while (nbytes < sizeof(buf) && (b = _passthru.port2->read_locked(lock_key)) >= 0) { buf[nbytes++] = b; } if (nbytes > 0) { _passthru.port1->write_locked(buf, nbytes, lock_key); } } bool GCS_MAVLINK::mavlink_coordinate_frame_to_location_alt_frame(const MAV_FRAME coordinate_frame, Location::AltFrame &frame) { switch (coordinate_frame) { case MAV_FRAME_GLOBAL_RELATIVE_ALT: // solo shot manager incorrectly sends RELATIVE_ALT instead of RELATIVE_ALT_INT case MAV_FRAME_GLOBAL_RELATIVE_ALT_INT: frame = Location::AltFrame::ABOVE_HOME; return true; case MAV_FRAME_GLOBAL_TERRAIN_ALT: case MAV_FRAME_GLOBAL_TERRAIN_ALT_INT: frame = Location::AltFrame::ABOVE_TERRAIN; return true; case MAV_FRAME_GLOBAL: case MAV_FRAME_GLOBAL_INT: frame = Location::AltFrame::ABSOLUTE; return true; default: #if CONFIG_HAL_BOARD == HAL_BOARD_SITL gcs().send_text(MAV_SEVERITY_INFO, "Unknown mavlink coordinate frame %u", coordinate_frame); #endif return false; } } uint64_t GCS_MAVLINK::capabilities() const { uint64_t ret = 0; AP_SerialManager::SerialProtocol mavlink_protocol = AP::serialmanager().get_mavlink_protocol(chan); if (mavlink_protocol == AP_SerialManager::SerialProtocol_MAVLink2) { ret |= MAV_PROTOCOL_CAPABILITY_MAVLINK2; } AP_AdvancedFailsafe *failsafe = get_advanced_failsafe(); if (failsafe != nullptr && failsafe->enabled()) { // Copter and Sub may also set this bit as they can always terminate ret |= MAV_PROTOCOL_CAPABILITY_FLIGHT_TERMINATION; } if (AP::rally()) { ret |= MAV_PROTOCOL_CAPABILITY_MISSION_RALLY; } return ret; } void GCS_MAVLINK::manual_override(RC_Channel *c, int16_t value_in, const uint16_t offset, const float scaler, const uint32_t tnow, const bool reversed) { if (c == nullptr) { return; } int16_t override_value = 0; if (value_in != INT16_MAX) { const int16_t radio_min = c->get_radio_min(); const int16_t radio_max = c->get_radio_max(); if (reversed) { value_in *= -1; } override_value = radio_min + (radio_max - radio_min) * (value_in + offset) / scaler; } c->set_override(override_value, tnow); } uint8_t GCS_MAVLINK::get_battery_remaining_percentage(uint8_t instance) const { const AP_BattMonitor &battery = AP::battery(); return battery.capacity_remaining_pct(instance); } GCS &gcs() { return *GCS::get_singleton(); }