/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/// @file Derivative.cpp
/// @brief A class to implement a derivative (slope) filter
/// See http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/
//
#include
#include
#include "Filter.h"
#include "DerivativeFilter.h"
template
void DerivativeFilter::update(T sample, uint32_t timestamp)
{
uint8_t i = FilterWithBuffer::sample_index;
uint8_t i1;
if (i == 0) {
i1 = FILTER_SIZE-1;
} else {
i1 = i-1;
}
if (_timestamps[i1] == timestamp) {
// this is not a new timestamp - ignore
return;
}
// add timestamp before we apply to FilterWithBuffer
_timestamps[i] = timestamp;
// call parent's apply function to get the sample into the array
FilterWithBuffer::apply(sample);
_new_data = true;
}
template
float DerivativeFilter::slope(void)
{
if (!_new_data) {
return _last_slope;
}
float result = 0;
// use f() to make the code match the maths a bit better. Note
// that unlike an average filter, we care about the order of the elements
#define f(i) FilterWithBuffer::samples[(((FilterWithBuffer::sample_index-1)+i+1)+3*FILTER_SIZE/2) % FILTER_SIZE]
#define x(i) _timestamps[(((FilterWithBuffer::sample_index-1)+i+1)+3*FILTER_SIZE/2) % FILTER_SIZE]
if (_timestamps[FILTER_SIZE-1] == _timestamps[FILTER_SIZE-2]) {
// we haven't filled the buffer yet - assume zero derivative
return 0;
}
// N in the paper is FILTER_SIZE
switch (FILTER_SIZE) {
case 5:
result = 2*2*(f(1) - f(-1)) / (x(1) - x(-1))
+ 4*1*(f(2) - f(-2)) / (x(2) - x(-2));
result /= 8;
break;
case 7:
result = 2*5*(f(1) - f(-1)) / (x(1) - x(-1))
+ 4*4*(f(2) - f(-2)) / (x(2) - x(-2))
+ 6*1*(f(3) - f(-3)) / (x(3) - x(-3));
result /= 32;
break;
case 9:
result = 2*14*(f(1) - f(-1)) / (x(1) - x(-1))
+ 4*14*(f(2) - f(-2)) / (x(2) - x(-2))
+ 6* 6*(f(3) - f(-3)) / (x(3) - x(-3))
+ 8* 1*(f(4) - f(-4)) / (x(4) - x(-4));
result /= 128;
break;
case 11:
result = 2*42*(f(1) - f(-1)) / (x(1) - x(-1))
+ 4*48*(f(2) - f(-2)) / (x(2) - x(-2))
+ 6*27*(f(3) - f(-3)) / (x(3) - x(-3))
+ 8* 8*(f(4) - f(-4)) / (x(4) - x(-4))
+ 10* 1*(f(5) - f(-5)) / (x(5) - x(-5));
result /= 512;
break;
default:
result = 0;
break;
}
// cope with numerical errors
if (isnan(result) || isinf(result)) {
result = 0;
}
_new_data = false;
_last_slope = result;
return result;
}
// reset - clear all samples
template
void DerivativeFilter::reset(void)
{
// call parent's apply function to get the sample into the array
FilterWithBuffer::reset();
}
// add new instances as needed here
template void DerivativeFilter::update(float sample, uint32_t timestamp);
template float DerivativeFilter::slope(void);
template void DerivativeFilter::reset(void);
template void DerivativeFilter::update(float sample, uint32_t timestamp);
template float DerivativeFilter::slope(void);
template void DerivativeFilter::reset(void);
template void DerivativeFilter::update(float sample, uint32_t timestamp);
template float DerivativeFilter::slope(void);
template void DerivativeFilter::reset(void);
template void DerivativeFilter::update(float sample, uint32_t timestamp);
template float DerivativeFilter::slope(void);
template void DerivativeFilter::reset(void);