/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* driver for Lanbao PSK-CM8JL65-CC5 Lidar */ #include #include "AP_RangeFinder_Lanbao.h" #include #include #include extern const AP_HAL::HAL& hal; /* this sensor has no way of reporting "out of range", it will keep reporting distances at of around 7 to 8 meters even when pointed at the sky. For this reason we limit the max range to 6 meters as otherwise we may be giving false data */ #define LANBAO_MAX_RANGE_CM 600 /* The constructor also initialises the rangefinder. Note that this constructor is not called until detect() returns true, so we already know that we should setup the rangefinder */ AP_RangeFinder_Lanbao::AP_RangeFinder_Lanbao(RangeFinder::RangeFinder_State &_state, AP_RangeFinder_Params &_params, uint8_t serial_instance) : AP_RangeFinder_Backend(_state, _params) { const AP_SerialManager &serial_manager = AP::serialmanager(); uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance); if (uart != nullptr) { // always 115200 uart->begin(115200); } } /* detect if a rangefinder is connected. We'll detect by trying to take a reading on Serial. If we get a result the sensor is there. */ bool AP_RangeFinder_Lanbao::detect(uint8_t serial_instance) { return AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance) != nullptr; } // read - return last value measured by sensor bool AP_RangeFinder_Lanbao::get_reading(uint16_t &reading_cm) { if (uart == nullptr) { return false; } float sum_range = 0; uint32_t count = 0; // format is: [ 0xA5 | 0x5A | distance-MSB-mm | distance-LSB-mm | crc16 ] // read any available lines from the lidar int16_t nbytes = uart->available(); while (nbytes-- > 0) { int16_t b = uart->read(); if (b == -1) { break; } if (buf_len == 0 && b != 0xA5) { // discard continue; } if (buf_len == 1 && b != 0x5A) { // discard if (b == 0xA5) { buf[0] = b; } else { buf_len = 0; } continue; } buf[buf_len++] = b; if (buf_len == sizeof(buf)) { buf_len = 0; uint16_t crc = (buf[5]<<8) | buf[4]; if (crc != calc_crc_modbus(buf, 4)) { // bad CRC, discard continue; } sum_range += float((buf[2]<<8) | buf[3]) * 0.001; count++; } } if (count > 0) { reading_cm = (sum_range / count) * 100; return reading_cm <= LANBAO_MAX_RANGE_CM?true:false; } return false; } /* update the state of the sensor */ void AP_RangeFinder_Lanbao::update(void) { if (get_reading(state.distance_cm)) { // update range_valid state based on distance measured state.last_reading_ms = AP_HAL::millis(); update_status(); } else if (AP_HAL::millis() - state.last_reading_ms > 200) { set_status(RangeFinder::RangeFinder_NoData); } }