#include "AC_PolyFence_loader.h" extern const AP_HAL::HAL& hal; static const StorageAccess fence_storage(StorageManager::StorageFence); /* maximum number of fencepoints */ uint8_t AC_PolyFence_loader::max_points() const { return MIN(255U, fence_storage.size() / sizeof(Vector2l)); } // create buffer to hold copy of eeprom points in RAM // returns nullptr if not enough memory can be allocated void* AC_PolyFence_loader::create_point_array(uint8_t element_size) { uint32_t array_size = max_points() * element_size; if (hal.util->available_memory() < 100U + array_size) { // too risky to enable as we could run out of stack return nullptr; } return calloc(1, array_size); } // load boundary point from eeprom, returns true on successful load bool AC_PolyFence_loader::load_point_from_eeprom(uint16_t i, Vector2l& point) { // sanity check index if (i >= max_points()) { return false; } // read fence point point.x = fence_storage.read_uint32(i * sizeof(Vector2l)); point.y = fence_storage.read_uint32(i * sizeof(Vector2l) + sizeof(uint32_t)); return true; } // save a fence point to eeprom, returns true on successful save bool AC_PolyFence_loader::save_point_to_eeprom(uint16_t i, const Vector2l& point) { // sanity check index if (i >= max_points()) { return false; } // write point to eeprom fence_storage.write_uint32(i * sizeof(Vector2l), point.x); fence_storage.write_uint32(i * sizeof(Vector2l)+sizeof(uint32_t), point.y); return true; } // validate array of boundary points (expressed as either floats or long ints) // returns true if boundary is valid template bool AC_PolyFence_loader::boundary_valid(uint16_t num_points, const Vector2* points) const { // exit immediate if no points if (points == nullptr) { return false; } // start from 2nd point as boundary contains return point (as first point) uint8_t start_num = 1; // a boundary requires at least 4 point (a triangle and last point equals first) if (num_points < start_num + 4) { return false; } // point 1 and last point must be the same. Note: 0th point is reserved as the return point if (!Polygon_complete(&points[start_num], num_points-start_num)) { return false; } // check return point is within the fence if (Polygon_outside(points[0], &points[1], num_points-start_num)) { return false; } return true; } // check if a location (expressed as either floats or long ints) is within the boundary // returns true if location is outside the boundary template bool AC_PolyFence_loader::boundary_breached(const Vector2& location, uint16_t num_points, const Vector2* points) const { // exit immediate if no points if (points == nullptr) { return false; } // start from 2nd point as boundary contains return point (as first point) uint8_t start_num = 1; // check location is within the fence return Polygon_outside(location, &points[start_num], num_points-start_num); } // declare type specific methods template bool AC_PolyFence_loader::boundary_valid(uint16_t num_points, const Vector2l* points) const; template bool AC_PolyFence_loader::boundary_valid(uint16_t num_points, const Vector2f* points) const; template bool AC_PolyFence_loader::boundary_breached(const Vector2l& location, uint16_t num_points, const Vector2l* points) const; template bool AC_PolyFence_loader::boundary_breached(const Vector2f& location, uint16_t num_points, const Vector2f* points) const;