

Trapezoidal Control of BLDC Motors Using Hall
Effect Sensors

Authors: Bilal Akin, Manish Bhardwaj

Texas Instruments, Inc.
C2000 Systems and Applications

 2

Contents

Introduction .. 3
BLDC Motors ... 3
BLDC Motor Control .. 5
System Topology ... 7
Benefits of 32-bit C2000 Controllers for Digital Motor Control12
TI Motor Control Literature and DMC Library .. 13
System Overview ... 14
Hardware Configuration ... 18
Software Setup Instructions to Run HVBLDC_Sensored Project ... 21
Incremental System Build .. 22

Abstract

This application note presents a solution for control of Brushless DC motors using the TMS320F2803x
microcontrollers. TMS320F280x devices are part of the family of C2000 microcontrollers which enable
cost-effective design of intelligent controllers for three phase motors by reducing the system components
and increase efficiency. Using these devices, it is possible to realize far more precise control algorithms.
A complete solution proposal is presented below: control structures, power hardware topology, control
hardware and remarks on energy conversion efficiency can be found in this document.

This application note covers the following:

 A theoretical background on trapezoidal BLDC motor control principle.
 A discussion of the BLDC drive imperfection handling the operating system
 Incremental build levels based on modular software blocks.
 Experimental results

 3

Introduction

The economic constraints and new standards legislated by governments place increasingly stringent
requirements on electrical systems. New generations of equipment must have higher performance
parameters such as better efficiency and reduced electromagnetic interference. System flexibility must be
high to facilitate market modifications and to reduce development time. All these improvements must be
achieved while, at the same time, decreasing system cost.

Brushless motor technology makes it possible to achieve these specifications. Such motors combine high
reliability with high efficiency, and for a lower cost in comparison with brush motors. This paper describes
the use of a Brushless DC Motor (BLDC). Although the brushless characteristic can be apply to several
kinds of motors – AC synchronous motors, stepper motors, switched reluctance motors, AC induction
motors - the BLDC motor is conventionally defined as a permanent magnet synchronous motor with a
trapezoidal Back EMF waveform shape. Permanent magnet synchronous machines with trapezoidal
Back-EMF and (120 electrical degrees wide) rectangular stator currents are widely used as they offer the
following advantages first, assuming the motor has pure trapezoidal Back EMF and that the stator phases
commutation process is accurate, the mechanical torque developed by the motor is constant; secondly,
the Brushless DC drives show a very high mechanical power density. This application report covers the
280x controllers and some system considerations to get out high performances from a BLDC motor drive.

BLDC Motors

The BLDC motor is an AC synchronous motor with permanent magnets on the rotor (moving part) and
windings on the stator (fixed part). Permanent magnets create the rotor flux and the energized stator
windings create electromagnet poles. The rotor (equivalent to a bar magnet) is attracted by the energized
stator phase. By using the appropriate sequence to supply the stator phases, a rotating field on the stator
is created and maintained. This action of the rotor - chasing after the electromagnet poles on the stator -
is the fundamental action used in synchronous permanent magnet motors. The lead between the rotor
and the rotating field must be controlled to produce torque and this synchronization implies knowledge of
the rotor position.

On the stator side, three phase motors are the most common. These offer a good compromise between
precise control and the number of power electronic devices required to control the stator currents. For the
rotor, a greater number of poles usually create a greater torque for the same level of current. On the other
hand, by adding more magnets, a point is reached where, because of the space needed between
magnets, the torque no longer increases. The manufacturing cost also increases with the number of
poles. As a consequence, the number of poles is a compromise between cost, torque and volume.

Fig.1 A three-phase synchronous motor with a one permanent magnet pair
pole rotor

 4

Permanent magnet synchronous motors can be classified in many ways, one of these that is of particular
interest to us is that depending on back-emf profiles: Brushless Direct Current Motor (BLDC) and
Permanent Magnet Synchronous Motor (PMSM). This terminology defines the shape of the back-emf of
the synchronous motor. Both BLDC and PMSM motors have permanent magnets on the rotor but differ in
the flux distributions and back-emf profiles. To get the best performance out of the synchronous motor, it
is important to identify the type of motor in order to apply the most appropriate type of control as
described in the next chapters.

Table 1. Comparison of BLDC and PMSM motors

• Both motor types are synchronous machines. The only difference between them is the shape of the

induced voltage, resulting from two different manners of wiring the stator coils. The back-emf is
trapezoidal in the BLDC motor case, and sinusoidal in the PMSM motor case.

• BLDC machines could be driven with sinusoidal currents and PMSM with direct currents, but for better

performance, PMSM motors should be excited by sinusoidal currents and BLDC machines by direct
currents.

• The can structure (hardware and software) of a sinusoidal motor required several current sensors and

sinusoidal phase currents were hard to achieve with analog techniques. Therefore many motors
(sinusoidal like trapezoidal) were driven with direct current for cost and simplicity reasons (low
resolution position sensors and single low cost current sensor), compromising efficiency and dynamic
behavior.

• Digital techniques addressed by the C2000 DSP controller make it possible to choose the right control

technique for each motor type: Processing power is used to extract the best performance from the
machine and reduce system costs. Possible options are using sensorless techniques to reduce the
sensor cost, or even eliminate it, and also complex algorithms can help simplify the mechanical drive
train design, lowering the system cost.

Comparison of BLDC and PMSM motors
BLDC PMSM

Synchronous machine Synchronous machine
Fed with direct currents Fed with sinusoidal currents
Trapezoidal Bemf Sinusoidal Bemf
Stator Flux position commutation each 60 degrees Continuous stator flux position variation
Only two phases ON at the same time Possible to have three phases ON at the same time
Torque ripple at commutations No torque ripple at commutations
Low order current harmonics in the audible range Less harmonics due to sinusoidal excitation
Higher core losses due to harmonic content Lower core loss
Less switching losses Higher switching losses at the same switching freq.
Control algorithms are relatively simple Control algorithms are mathematically intensive

 5

NlrBwE 2=

BLDC Motor Control

The key to effective torque and speed control of a BLDC motor is based on relatively simple torque and
Back EMF equations, which are similar to those of the DC motor. The Back EMF magnitude can be
written as:

and the torque term as:

𝑇 = �
1
2
𝑖2
𝑑𝐿
𝑑𝜃
� − �

1
2
𝐵2

𝑑𝑅
𝑑𝜃
� + �

4𝑁
𝜋
𝐵𝑟𝑙𝜋𝑖�

where N is the number of winding turns per phase, l is the length of the rotor, r is the internal radius of the
rotor, B is the rotor magnet flux density, w is the motor’s angular velocity, i is the phase current, L is the
phase inductance, θ is the rotor position, R is the phase resistance.

The first two terms in the torque expression are parasitic reluctance torque components. The third term
produces mutual torque, which is the torque production mechanism used in the case of BLDC motors. To
sum up, the Back EMF is directly proportional to the motor speed and the torque production is almost
directly proportional to the phase current. These factors lead to the following BLDC motor speed control
schemes:

Fig.2 Speed and Current Control Loop Configurations for a BLDC Motor

(a)

(b)

(c)

 6

The BLDC motor is characterized by a two phase ON operation to control the inverter. In this control
scheme, torque production follows the principle that current should flow in only two of the three phases at
a time and that there should be no torque production in the region of Back EMF zero crossings. The
following figure describes the electrical wave forms in the BLDC motor in the two phases ON operation.

This control structure has several advantages:

• Only one current at a time needs to be controlled.
• Only one current sensor is necessary (or none for speed loop only, as detailed in the next sections).
• The positioning of the current sensor allows the use of low cost sensors as a shunt.

We have seen that the principle of the BLDC motor is, at all times, to energize the phase pair which can
produce the highest torque. To optimize this effect the Back EMF shape is trapezoidal. The combination
of a DC current with a trapezoidal Back EMF makes it theoretically possible to produce a constant torque.
In practice, the current cannot be established instantaneously in a motor phase; as a consequence the
torque ripple is present at each 60 degree phase commutation.

 Fig 3. Electrical Waveforms in the Two Phase ON Operation and Torque Ripple

If the motor used has a sinusoidal Back EMF shape, this control can be applied but the produced torque
is:
• Firstly, not constant but made up from portions of a sine wave. This is due to its being the combination

of a trapezoidal current control strategy and of a sinusoidal Back EMF. Bear in mind that a sinusoidal
Back EMF shape motor controlled with a sine wave strategy (three phase ON) produces a constant
torque.

• Secondly, the torque value produced is weaker.

Fig.4 Torque Ripple in a Sinusoidal Motor Controlled as a BLDC

 7

System Topology

Three Phase Inverter

The BLDC motor control consists of generating DC currents in the motor phases. This control is
subdivided into two independent operations: stator and rotor flux synchronization and control of the
current value. Both operations are realized through the three phase inverter depicted in the following
scheme.

Fig.5 Three Phase Inverter

The flux synchronization is derived from the position information coming from sensors, or from sensorless
techniques. From the position, the controller determines the appropriate pair of transistors (Q1 to Q6)
which must be driven. The regulation of the current to a fixed 60 degrees reference can be realized in
either of the two different modes:

1. The Pulse Width Modulation (PWM) Mode

The supply voltage is chopped at a fixed frequency with a duty cycle depending on the current error.
Therefore both the current and the rate of change of current can be controlled. The two phase supply
duration is limited by the two phase commutation angles. The main advantage of the PWM strategy is
that the chopping frequency is a fixed parameter; hence, acoustic and electromagnetic noises are
relatively easy to filter.

There are also two ways of handling the drive current switching: hard chopping and soft chopping.In the
hard chopping technique both phase transistors are driven by the same pulsed signal: the two transistors
are switched-on and switched-off at the same time. The power electronics board is then easier to design
and is also cheaper as it handles only three pulsed signals. A disadvantage of the hard chopping
operation is that it increases the current ripple by a large factor in comparison with the soft chopping
approach.

The soft chopping approach allows not only a control of the current and of the rate of change of the
current but a minimization of the current ripple as well. In this soft chopping mode the low side transistor
is left ON during the phase supply and the high side transistor switches according to the pulsed signal. In
this case, the power electronics board has to handle six PWM signals.

 8

2. The Hysteresis Mode

In the hysteresis-type current regulator, the power transistors are switched off and on according to
whether the current is greater or less than a reference current. The error is used directly to control the
states of the power transistors. The hysteresis controller is used to limit the phase current within a preset
hysteresis band. As the supply voltage is fixed, the result is that the switching frequency varies as the
current error varies. The current chopping operation is thus not a fixed chopping frequency PWM
technique. This method is more commonly implemented in drives where motor speed and load do not
vary too much, so that the variation in switching frequency is small. Here again, both hard and soft
chopping schemes are possible. Since the width of the tolerance band is a design parameter, this mode
allows current control to be as precise as desired, but acoustic and electromagnetic noise are difficult to
filter because of the varying switching frequency.

Shaft Position Sensors

The position information is used to generate precise firing commands for the power converter, ensuring
drive stability and fast dynamic response. In servo applications position feedback is also used in the
position feedback loop. Velocity feedback can be derived from the position data, thus eliminating a
separate velocity transducer for the speed control loop.

Three common types of position sensors are used: the incremental sensors, the three Hall Effect sensor
and resolver.

• The incremental sensors use optically coded disks with either single track or quadrature resolution to

produce a series of square wave pulses. The position is determined by counting the number of pulses
from a known reference position. Quadrature encoders are direction sensitive and so do not produce
false data due to any vibration when the shaft begins rotation. The Quadrature Encoder Pulse unit of
the F280x handles encoders’ output lines and can provide 1, 2 or 4 times the encoder resolution.
Speed information is available by counting the number of pulses within a fix time period.

• The three Hall Effect sensors provide three overlapping signals giving a 60° wide position range. The

three signals can be wired to the F280x Input Capture/GPIO pins, thus speed information is available
by measuring the time interval between two Input Captures. The time interval is automatically stored
by the 280x into a specific register at each Input Capture. From speed information it is numerically
possible to get the precise position information needed for sharp firing commands.

• The resolver is made up of three windings (different from the motor’s windings): one linked to the rotor

and supplied with a sinusoidal source and two other orthogonal coils linked to the stator. A Back EMF
is induced by the rotating coil in each of the two stator resolver windings. By decoding these two
signals it is possible to get cos(q) and sin(q) where q is the rotor position. The resolver resolution
depends only on the AD conversion.

Current Sensing

A characteristic of the BLDC control is to have only one current at a time in the motor (two phases ON).
Consequently, it is not necessary to put a current sensor on each phase of the motor; one sensor placed
in the line inverter input makes it possible to control the current of each phase. Moreover, using this
sensor on the ground line, insulated systems are not necessary, and a low cost resistor can be used. Its
value is set such that it activates the integrated over-current protection when the maximum current
permitted by the power board has been reached.

Each current measurement leads to a new PWM duty cycle loaded at the beginning of a PWM cycle.
Note that, during Turn OFF, the shunt resistor does not have this current to sense, regardless of whether
the inverter is driven in hard chopping or in soft chopping mode. The figure below depicts the shunt
current in soft chopping mode and shows that in the Turn OFF operation the decreasing current flows
through the M2 free wheeling diode and through the maintained closed M4 (so there is no current

 9

observable in the shunt in this chopping mode during Turn OFF). This implies that it is necessary to start
a current conversion in the middle of the PWM duty cycle.

Fig. 6 Shunt Resistor Voltage Drop according to PWM DutyCycles (Soft Chopping)

In the hard chopping mode during the Turn OFF neither M1 nor M4 drive current, so that the decreasing
phase current flows from ground through the shunt resistor via M2 and M3 free wheeling diodes and back
to ground via the capacitor. In this chopping mode it is possible to see the exponentially decreasing
phase current across the shunt as a negative shunt voltage drop appears. Assuming that neither the
power board nor the control board support negative voltages, this necessitates that the current be sensed
in the middle of the Turn ON.

Position and Speed Sensing

The motor in this application is equipped with three Hall Effect sensors. These sensors are fed by the
power electronics board. The sensor outputs are directly wired to the GPIO pins. The Hall Effect sensors
give three 180° overlapping signals, thus providing the six mandatory commutation points: The rising and
falling edges of the sensor output are detected, the corresponding flags are generated. The system first
determines which edge has been detected, then computes the time elapsed since the last detected edge
and commutates the supplied phases.

The speed feedback is derived from the position sensor output signals. As mentioned in the previous
paragraph, there are six commutation signals per mechanical revolution. In other words, between two
commutation signals there are 60° mechanical degrees. As the speed can be written as:

T∆
∆θ

where θ is the mechanical angle it is possible to get the speed from the computed elapsed time between
two captures. Between two commutation signals the angle variation is constant as the Hall Effect sensors
are fixed relative to the motor, so speed sensing is reduced to a simple division.

 10

Benefits of 32-bit C2000 Controllers for Digital Motor Control (DMC)

C2000 family of devices posses the desired computation power to execute complex control algorithms
along with the right mix of peripherals to interface with the various components of the DMC hardware like
the ADC, ePWM, QEP, eCAP etc. These peripherals have all the necessary hooks for implementing
systems which meet safety requirements, like the trip zones for PWMs and comparators. Along with this
the C2000 ecosystem of software (libraries and application software) and hardware (application kits) help
in reducing the time and effort needed to develop a Digital Motor Control solution. The DMC Library
provides configurable blocks that can be reused to implement new control strategies. IQMath Library
enables easy migration from floating point algorithms to fixed point thus accelerating the development
cycle.

Thus, with C2000 family of devices it is easy and quick to implement complex control algorithms
(sensored and sensorless) for motor control. The use of C2000 devices and advanced control schemes
provides the following system improvements:

 Favors system cost reduction by an efficient control in all speed range implying right dimensioning of
power device circuits

 Use of advanced control algorithms it is possible to reduce torque ripple, thus resulting in lower
vibration and longer life time of the motor

 Advanced control algorithms reduce harmonics generated by the inverter thus reducing filter cost.

 Use of sensorless algorithms eliminates the need for speed or position sensor.

 Decreases the number of look-up tables which reduces the amount of memory required

 The Real-time generation of smooth near-optimal reference profiles and move trajectories, results in
better-performance

 Generation of high resolution PWM’s is possible with the use of ePWM peripheral for controlling the
power switching inverters

 Provides single chip control system

For advanced controls, C2000 controllers can also perform the following:

 Enables control of multi-variable and complex systems using modern intelligent methods such as neural
networks and fuzzy logic.

 Performs adaptive control. C2000 controllers have the speed capabilities to concurrently monitor the
system and control it. A dynamic control algorithm adapts itself in real time to variations in system
behaviour.

 Performs parameter identification for sensorless control algorithms, self commissioning, online
parameter estimation update.

 Performs advanced torque ripple and acoustic noise reduction.

 Provides diagnostic monitoring with spectrum analysis. By observing the frequency spectrum of
mechanical vibrations, failure modes can be predicted in early stages.

 Produces sharp-cut-off notch filters that eliminate narrow-band mechanical resonance. Notch filters
remove energy that would otherwise excite resonant modes and possibly make the system unstable.

 11

TI Literature and DMC Library

The Digital Motor Control (DMC) library is composed of functions represented as blocks. These blocks
are categorized as Transforms & Estimators (Clarke, Park, Sliding Mode Observer, Phase Voltage
Calculation, and Resolver, Flux, and Speed Calculators and Estimators), Control (Signal Generation, PI,
BEMF Commutation, Space Vector Generation), and Peripheral Drivers (PWM abstraction for multiple
topologies and techniques, ADC drivers, and motor sensor interfaces). Each block is a modular software
macro is separately documented with source code, use, and technical theory. Check the folders below for
the source codes and explanations of macro blocks:

 C:\TI\controlSUITE\libs\app_libs\motor_control\math_blocks\v4.0
 C:\TI\controlSUITE\libs\app_libs\motor_control\drivers\ f2803x_v2.0

These modules allow users to quickly build, or customize, their own systems. The Library supports the
three motor types: ACI, BLDC, PMSM, and comprises both peripheral dependent (software drivers) and
target dependent modules.

The DMC Library components have been used by TI to provide system examples. At initialization all DMC
Library variables are defined and inter-connected. At run-time the macro functions are called in order.
Each system is built using an incremental build approach, which allows some sections of the code to be
built at a time, so that the developer can verify each section of their application one step at a time. This is
critical in real-time control applications where so many different variables can affect the system and many
different motor parameters need to be tuned.

Note: TI DMC modules are written in form of macros for optimization purposes (refer to application note
SPRAAK2 for more details at TI website). The macros are defined in the header files. The user can open
the respective header file and change the macro definition, if needed. In the macro definitions, there
should be a backslash ”\” at the end of each line as shown below which means that the code continue in
the next line. Any character including invisible ones like “space” after the backslash will cause compilation
error. Therefore, make sure that the backslash is the last character in the line. In terms of code
development, the macros are almost identical to C function, and the user can easily convert the macro
definition to a C functions.

#define PARK_MACRO(v) \
 \

v.Ds = _IQmpy(v.Alpha,v.Cosine) + _IQmpy(v.Beta,v.Sine); \
v.Qs = _IQmpy(v.Beta,v.Cosine) - _IQmpy(v.Alphv.Sine);

A typical DMC macro definition

 12

System Overview

This document describes the “C” real-time control framework used to demonstrate the trapezoidal control
of BLDC motors. The “C” framework is designed to run on TMS320C2803x based controllers on Code
Composer Studio. The framework uses the following modules1:

Macro Names Explanation
BLDCPWM / PWMDAC PWM and PWMDAC Drives
HALL_GPIO DRV Hall Drive
PI PI Regulators
RC Ramp Controller (slew rate limiter)
RC2 Ramp up and Ramp down Module
RC3 Ramp down Module
SPEED_PR Speed Measurement (based on sensor signal period)
IMPULSE Impulse Generator
MOD6_CNT Mod 6 Counter
1 Please refer to pdf documents in motor control folder explaining the details and theoretical background of each macro

In this system, the trapezoidal control of BLDC motors using Hall Effect sensors will be experimented and
will explore the performance of the speed controller. The BLDC motor is driven by a conventional voltage-
source inverter. The TMS320F2803x control card is used to generate three pulse width modulation
(PWM) signals. The motor is driven by an integrated power module by means of BLDC specific PWM
technique. DC bus return current (I fb_Sum) is measured and sent to the TMS320x2803x via analog-to-
digital converters (ADCs). Hall Effect signals are level shifted on the board and sent to GPIO pins for
commutation.

 13

HVBLDC_Sensored project has the following properties:

C Framework

System Name Program Memory Usage
2803x

Data Memory Usage1

2803x
HVBLDC_Sensored 3576 words2 1980 words

1 Excluding the stack size
2 Excluding “IQmath” Look-up Tables

CPU Utilization – BLDC Sensored
Total Number of Cycles 447*
CPU Utilization @ 60 Mhz 14.9%
CPU Utilization @ 40 Mhz 22.3%

* At 20 kHz ISR freq. Debug macros excluded.

System Features
Development /Emulation Code Composer Studio v4.1 (or above) with Real Time debugging
Target Controller TMS320F2803x
PWM Frequency 20kHz PWM (Default), 60kHz PWMDAC
PWM Mode Asymmetrical with no dead band
Interrupts CPU Timer 0 – Implements 40 kHz ISR execution rate
Peripherals Used PWM 1 / 2 / 3 for motor control

PWM 6A, 6B, 7A & 7B for DAC outputs
ADC A2 for low side DC bus return current sensing

 14

The overall system implementing a 3-ph sensored BLDC control is depicted in Fig.6* and 7.

Fig 6 A 3-ph BLDC drive implementation

Fig. 7 Overall block diagram of hall-sensor control of BLDC motor

*Note that the dcbus return current is obtained through the summation of three phase currents in R1.1

 15

The software flow is shown below.

Interrupt INT1

TINT0_ISR

Save contexts and clear
interrupt flags

Execute ADC
conversion (for current

loop)

Execute Hall Drv

Execute Mod6 counter
module

Execute RC2 module

Execute PID module

Execute BLDC PWM
DRV

Update Datalog and
Virtual Timer

Restore context Return

c_ int0

Initialize S /W
modules

Initialize time
bases

Confg CPU Timer 0
and enable INT1

Initialize other
system and

module parameters

Background
loop INT 1

 16

Hardware Configuration (HVDMC R1.1 Kit)

Please refer to the HVMotorCtrl+PFC How to Run Guide found:

C:\TI\controlSUITE\development_kits\HVMotorCtrl+PfcKit_v2.0\~Docs

for an overview of the kit’s hardware and steps on how to setup this kit. Some of the hardware setup
instructions are captured below for quick reference

HW Setup Instructions

1. Open the Lid of the HV Kit

2. Install the Jumpers [Main]-J3, J4 and J5, J9 for 3.3V, 5V and 15V power rails and JTAG reset line.

3. Unpack the DIMM style controlCARD and place it in the connector slot of [Main]-J1. Push vertically
down using even pressure from both ends of the card until the clips snap and lock. (to remove the
card simply spread open the retaining clip with thumbs)

4. Connect a USB cable to connector [M3]-JP1. This will enable isolated JTAG emulation to the
C2000 device. [M3]-LD1 should turn on. Make sure [M3]-J5 is not populated. If the included Code
Composer Studio is installed, the drivers for the onboard JTAG emulation will automatically be
installed. If a windows installation window appears try to automatically install drivers from those
already on your computer. The emulation drivers are found at
http://www.ftdichip.com/Drivers/D2XX.htm. The correct driver is the one listed to support the FT2232.

5. If a third party JTAG emulator is used, connect the JTAG header to [M3]-J2 and additionally [M3]-J5
needs to be populated to put the onboard JTAG chip in reset.

6. Ensure that [M6]-SW1 is in the “Off” position. Connect 15V DC power supply to [M6]-JP1.

7. Turn on [M6]-SW1. Now [M6]-LD1 should turn on. Notice the control card LED would light up as well
indicating the control card is receiving power from the board.

8. Note that the motor should be connected to the [M5]-TB3 terminals after you finish with the first
incremental build step.

9. Note the DC Bus power should only be applied during incremental build levels when instructed to do
so. The two options to get DC Bus power are discussed below,

(i) To use DC power supply, set the power supply output to zero and connect [Main]-BS5 and BS6 to DC
power supply and ground respectively.

(ii) To use AC Mains Power, Connect [Main]-BS1 and BS5 to each other using banana plug cord. Now
connect one end of the AC power cord to [Main]-P1. The other end needs to be connected to output
of a variac. Make sure that the variac output is set to zero and it is connected to the wall supply
through an isolator.

Note: Phase voltage sensing caps (C21, 22, 23) are optimized for AC motor control. Use lower value
capacitors (i.e. <=2.2nF) to reach peak torque. Also note that, dc bus current feedback is obtained as
sum of all three phases instead of a shunt resistor on the dc bus return path.

 17

For reference the pictures below show the jumper and connectors that need to be connected for this lab.
Note that the order of motor cable colors connected to inverter output should be as shown below. Please
check the motor datasheet for further details.

Fig. 8 Using AC Power to generate DC Bus Power

 CAUTION: The inverter bus capacitors remain charged for a long time after the high
power line supply is switched off/disconnected. Proceed with caution!

BLDC
Motor

 Hall
Sensors

15V DC

AC
Entry

J3,J4,J5
J9

 18

 CAUTION: The inverter bus capacitors remain charged for a long time after the high
power line supply is switched off/disconnected. Proceed with caution!

BLDC
Motor

Hall
Sensors

15V DC

J3,J4,J5
J9

DC Power Supply (max. 350V)
+ -

Fig.9 Using External DC power supply to generate DC-Bus for the inverter

 19

Software Setup Instructions to Run HVBLDC_Sensored Project

Please refer to the “Generic Steps for Software Setup for HVMotorCtrl+PFC Kit Projects” section in the
HVMotorCtrl+PFC Kit How To Run Guide

C:\TI\controlSUITE\development_kits\HVMotorCtrl+PfcKit_v2.0\~Docs

This section goes over how to install CCS and set it up to run with this project.
Select the HVBLDC_Sensored as the active project. Verify that the build level is set to 1, and then right
click on the project name and select “Rebuild Project”. Once build completes, launch a debug session to
load the code into the controller. Now open a watch window and add the variables shown in the table
below and select the appropriate Q format for them.

Watch Window Variables
Variable Name Viewed as

EnableFlag Unsigned Integer
IsrTicker Unsigned Integer
SpeedRef Q24
Dlog.prescalar Integer
SpeedLoopFlag Unsigned Integer
ILoopFlag Unsigned Integer
CmtnPeriodTarget Unsigned Integer
DFuncDesired Unsigned Integer
ClosedFlag Unsigned Integer
pi_spd.Out Q24
pi_idc.Out Q24
Pi_spd.Kp Q24
speed1.Speed Q24

Setup time graph windows by importing Graph1.graphProp and Graph2.graphProp from the following
location C:\TI\ControlSUITE\developement_kits\HVMotorCtrl+PfcKit_v2.0\HVBLDC_Sensored\. Click on
Continuous Refresh button on the top left corner of the graph tab to enable periodic capture of data
from the microcontroller.

Incremental System Build for Sensored BLDC project

The system is gradually built up in order for the final system can be confidently operated. Six phases of
the incremental system build are designed to verify the major software modules used in the system. The
table below summarizes the modules testing and using in each incremental system build.

Testing modules in each incremental system build
Software Module Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
PWMDAC_MACRO √√ √ √ √
RC3_MACRO √√ √√ √ √ √
MOD6_CNT_MACRO √√ √√ √ √ √
IMPULSE_MACRO √√ √√ √ √ √
BLDCPWM_MACRO √√ √√ √ √ √
RC2_MACRO √√ √ √
HALL3 _READ_MACRO √√ √ √
SPEED_PR_MACRO √√ √ √
PI_MACRO (IDC) √√ √
RC_MACRO √√
PI_MACRO (SPD) √√
Note: the symbol √ means this module is using and the symbol √√ means this module is testing in this phase.

 20

Level 1 Incremental Build

Assuming the load and build steps described in the “HVMotorCtrl+PFC Kit How To Run Guide” completed
successfully, this section describes the steps for a “minimum” system check-out which confirms operation
of system interrupts, some peripheral & target independent modules and one peripheral dependent
module. Open HVBLDC_Sensored-Settings.h and select level 1 incremental build option by setting the
BUILDLEVEL to LEVEL1 (#define BUILDLEVEL LEVEL1). Now Right Click on the project name and
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real
time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will be
incrementally increased as seen in watch windows to confirm the interrupt working properly.
In the software, the key variables to be adjusted are summarized below.

 RampDelay (Q0 format): for changing the ramping time.
 CmtnPeriodTarget (Q0 format): for changing the targeted commutation interval.

The key explanations and steps are given as follows:

 The start-up and the initial speed up of the BLDC motor is controlled by the RMP3CNTL module. This
module generates a ramp down function. This ramp down feature of RMP3CNTL module allows speed
up of the BLDC motor from stand still in an open loop configuration (like a stepper motor). Note that the

 One of the inputs to RMP3CNTL module, DesiredInput, determines the final speed at the end of the
motor speed up phase. This input is provided from the system using the system variable
CmtnPeriodTarget. User initializes this system variable with appropriate value depending on the type of
the BLDC motor. The second input to RMP3CNTL module is rmp3_dly, which is also user initialized by
using the system variable RampDelay. This determines the rate at which the motor speeds up. The
output of RMP3CNTL module is Out, which provides a variable time period gradually decreasing in
time. The second output of RMP3CNTL module is Ramp3DoneFlag, which, when set to 0x7FFF,
indicates the end of the ramp down (or motor speed up) phase.

 Out is used to provide the input Period for the IMPULSE module. This module generates periodic
impulses with period specified by its input Period.

 The DATALOG module is used to view the output variables of the modules. The initialization required to
perform this, is done in the level 1 incremental build initialization routine. During this initialization, one of
the inputs of DATALOG module is configured to point to mod1.Counter. Thus Out signal is shown in the
graph in CCS.

 The periodic impulse output, Out, is applied to the input TrigInput of the MOD6_CNT module. The
output of this module is Counter, which can assume one of the 6 possible values 0, 1, 2, 3, 4 or 5. This
output changes from one state to the next when a trigger pulse is applied to the input. This Counter is
finally used as the pointer input, CmtnPointer, for the module BLDC_3PWM_DRV. These 6 values of
the pointer variable, CmtnPointer, are used to generate the 6 commutation states of the power inverter
driving the BLDC motor. The duty cycle of the generated PWM outputs (according to the 6 commutation
states) during the motor speed up phase are determined by the input DfuncTesting.

 21

 Now, compile/load/run program with real time mode and set “EnableFlag” to 1 in the watch window.
Initially when RMP3CNTL ramps down, Period (the period of Out) will also gradually go down. At the
end of ramp period (when Out equals DesiredInput) Period will become constant and Ramp3DoneFlag
will set to 0x7FFF. Enter a new lower value for CmtnperiodTarget (DesiredInput). Then Period will
gradually reduce to the new value.

 Check MOD6_CNT output variable Counter in the watch window and graph window. This will vary
between 0 and 5.

 Use a scope to check the PWM outputs controlled by the peripheral dependent module
BLDC_3PWM_DRV. The odd numbered PWM outputs (PWM1, PWM3, and PWM5) will either generate
PWM pulses or remain OFF. The even numbered PWM outputs (PWM2, PWM4, and PWM6) will either
remain ON or OFF.

 The output states of all the 6 PWM outputs will be such that together they generate the 6 commutation
states of the power inverter driving the BLDC motor.

 After verifying this take the controller out of real time mode (disable) reset the processor and then
terminate the debug session.

During running this build, the PWM outputs should be appeared as follow:

Fig. 10 The PWM outputs , PWM 1 (Yellow) , PWM 2
(Pink) and PWM 5 (Green), PWM 6 (Blue)

 22

RampDelay

CmtnPeriodTarget DesiredInput Out

Ramp3DoneFlag

Period

Ramp3Delay

IMPULSE
MACRO Out TrigInput

BLDC
PWM
DRV

EV

HW

PWM 1

PWM 2

PWM 3

PWM 4

PWM 5

PWM 6

MOD6_CNT
MACRO

Counter CmtnPointer

MfuncPeriod

DFuncTesting

Watch
Window

Level 1 Incremental System Build Block Diagram

RC3
MACRO

DutyFunc

Level 1 describes the steps for a “minimum” system check-out which confirms operation of system interrupts, some peripheral &
target independent modules and one peripheral dependent module..

 23

Level 2 Incremental Build

Assuming the previous section is completed successfully, this section verifies the open loop motor
operation and current measurement. Open HVBLDC_Sensored-Settings.h and select level 1 incremental
build option by setting the BUILDLEVEL to LEVEL2 (#define BUILDLEVEL LEVEL2). Now Right Click
on the project name and click Rebuild Project. Once the build is complete click on debug button, reset
CPU, restart, enable real time mode and run. Set “EnableFlag” to 1 in the watch window. The variable
named “IsrTicker” will be incrementally increased as seen in watch windows to confirm the interrupt
working properly.

In the software, the key variables to be adjusted are summarized below.

 RampDelay (Q0 format): for changing the ramping time.
 CmtnPeriodTarget (Q0 format): for changing the targeted commutation interval.

The key steps can be explained as follows:

Level 2A Open Loop Test

 Compile/load/run program with real time mode and then increase voltage at variac / dc power supply to
get the appropriate DC-bus voltage. Now the motor is running with default DFuncTesting value.

 If the open loop commutation parameters are chosen properly then the motor will gradually speed up
and finally run at a constant speed in open loop commutation mode.

 The final speed of the motor will depend on the parameter CmtnPeriodTarget. The lower the value for
this variable the higher will be the motor final speed. Since the motor Bemf depends on it’s speed, the
value chosen for CmtnPeriodTarget will also determine the generated Bemf.

 The average applied voltage to the motor during startup will depend on the parameter DfuncTesting.
The parameters DfuncTesting and CmtnPeriodTarget should be such that, at the end of motor speed
up phase, the generated Bemf is lower than the average voltage applied to motor winding. This will
prevent the motor from stalling or vibrating. The default DfuncTesting and CmtnPeriodTarget values in
the initialization section is selected for the motor in HVDMC kit. When a different motor is tested, these
values need to be tuned to prevent possible vibration and startup the motor properly. Both DfuncTesting
and CmtnPeriodTarget should be adjusted accordingly in the watch windw to increase the motor
speed.The motor speed up time will depend on RampDelay, the time period of the main sampling loop
and the difference between CmtnPeriodTarget and CmtnPeriodSetpt.

Note: This step is not meant for wide speed and torque range operation; instead the overall system is
tested and calibrated before closing the loops at a certain speed under no-load.

Bring the system to a safe stop as described below by reducing the bus voltage, taking the controller out of
realtime mode and reset.

After verifying this, reduce the DC Bus voltage, take the controller out of real time mode (disable),
reset the processor (see “HVMotorCtrl+PFC Kit How To Run Guide” for details). Note that

after each test, this step needs to be repeated for safety purposes. Also note that improper shutdown
might halt the PWMs at some certain states where high currents can be drawn, hence caution needs to
be taken while doing these

 24

Level 2B ADC Verification and Offset Calibration

 Verify ADC operation by monitoring dc bus return current and all three back emfs (optional).

 Turn off the power supply and compile/load/run program with real time mode. When the dc bus voltage
is zero, the displayed current on the watch window (DCbus_current) should be zero. If not, adjust the
offset value in the code by going to :

DCbus_current = _IQ12toIQ(AdcResult.ADCRESULT4)-_IQ(0.5);

and change IQ15(0.50) offset value (e.g. IQ15(0.5087) or IQ15(0.4988) depending on the sign and
amount of the offset. Once this step is completed, turn on the power supply and set the output value to
zero.

During level 2, the BLDC Hall Effect sensors’ output and PWMDAC outputs should be appeared as
follows:

Fig. 11 The outputs of Hall Effect sensors, Hall A, B and C

Fig. 12 PWMDAC outputs BemfA, BemfB and BemfC (Vdcbus=160V)

 25

During running this level, the waveforms in the CCS graphs should be appeared as follow:

Fig. 13 (a) mod6 counter (b) impulse output, dlog.prescalar=3

Fig. 14 (a) mod6 counter, (b) BemfA, (c) BemfB and (d)BemfC
(dlog.prescalar=25 and Vdcbus=160V)

 26

RampDelay

CmtnPeriod
Target DesiredInput Out

Ramp3DoneFlag

Period

Ramp3Delay

IMPULSE
MACRO Out TrigInput

BLDC
PWM
DRV

EV

HW

PWM 1

PWM 2

PWM 3

PWM 4

PWM 5

PWM 6

MOD6_CNT
MACRO

Counter CmtnPointer

MfuncPeriod

DfuncTesting

Watch
Window

3-Phase
Inverter

ADCIn1ADCResult0

ADC

CONV

ADC

HW

Bemf A

ADCIn2

ADCIn3

ADCIn4

ADCResult1Bemf B

ADCResult2Bemf C

ADCResult3I_Shunt

BLDC
Motor

Level 2 Incremental System Build Block Diagram

DutyFunc

PwmDacPointer 1

Scope Low
Pass
Filter

PwmDacPointer 2

PwmDacPointer 3

PwmDacPointer 4

DAC 1

DAC 2

DAC 4

DAC 3

PWM5A

PWM6A

PWM7B

PWM7A

PWMDAC
MACRO

RC3
MACRO

Dlog 1

Dlog 2

Dlog 3

Dlog 4

CCS Graph
Window

DLOG
MACRO

Level 2 verifies the open loop motor operation and current measurement.

 27

Level 3 Incremental Build

Assuming the previous section completed successfully, this section describes the closed-loop operation
of sensored trapezoidal drive of BLDC motor using Hall sensor. Open HVBLDC_Sensored-Settings.h and
select level 1 incremental build option by setting the BUILDLEVEL to LEVEL3 (#define BUILDLEVEL
LEVEL3). Now Right Click on the project name and click Rebuild Project. Once the build is complete click
on debug button, reset CPU, restart, enable real time mode and run. Set “EnableFlag” to 1 in the watch
window. The variable named “IsrTicker” will be incrementally increased as seen in watch windows to
confirm the interrupt working properly.

In the software, the key variables to be adjusted are summarized below.

 DFuncDesired (Q15 format): for changing the PWM duty function in per-unit.

The key steps can be explained as follows:

 Compile/load/run program with real time mode and then increase voltage at variac / dc power supply to
get the appropriate DC-bus voltage. Now the motor is running with default DFuncDesired value.

 Then, the motor will be running using the newly created map for every commutation. Vary the motor
speed by changing the PWM duty ratio represented by DFuncDesired. Double-click on DFuncDesired
in the Watch Window, and enter the new value. This is a Q15 parameter, and therefore, the max value
is 0x7FFF.

 Check the calculated speed based on the Hall signals with the six times frequency of commutation
trigger signals in graph windows or oscilloscope screen.

 Check the measured DC-bus current if it is nearly zero when the motor is operating at no-load.

 Verify the motor speed (both pu and rpm) calculated by SPEED_PR

 Bring the system to a safe stop as described below by reducing the bus voltage, taking the controller
out of realtime mode and reset.

 28

During running this level, the current waveforms in the CCS graphs should appear as follows:

PWMDAC outputs should be appeared as follows:

Fig. 15 (a) mod6 counter, (b) HallGpioAccepted (dlog.prescalar=25 and Vdcbus=160V)

Fig. 16 (a) mod6 counter, (b) HallGpioAccepted, (c) mod1.trigInput (Vdcbus=160V)

 29

RampDelay

CmtnPeriod
Target DesiredInput Out

Ramp3DoneFlag

Period

Ramp3Delay

IMPULSE
MACRO Out TrigInput

BLDC
PWM
DRV

EV

HW

PWM 1

PWM 2

PWM 3

PWM 4

PWM 5

PWM 6

MOD6_CNT
MACRO

Counter CmtnPointer

MfuncPeriod

3-Phase
Inverter

ADCIn1ADCResult0Bemf A

ADCIn2

ADCIn3

ADCIn4

ADCResult1Bemf B

ADCResult2Bemf C

ADCResult3I_Shunt

BLDC
Motor

Level 3 Incremental System Build Block Diagram

HALL

DRV

GPIO/
CAP

HW

Hall A

Hall B

Hall C

RC3
MACRO

RC2
MACRO

DutyFunc

Out

ClosedFlag=1

CmtnTrigHall

DesiredInputDFuncDesired

Ramp2Delay

HallMapPointerMod1.Counter

SPEED_PR
MACRO

VIRTUAL
TIMER

Virtual TimerTimeStamp

ADC

CONV

ADC

HW

Level 3 describes the closed-loop operation of sensored trapezoidal drive of BLDC motor using Hall sensor.

 30

Level 4 Incremental Build
Assuming the previous section is completed successfully, this section verifies the closed current loop and
current PI controller. Open HVBLDC_Sensored-Settings.h and select level 2 incremental build option by
setting the BUILDLEVEL to LEVEL4 (#define BUILDLEVEL LEVEL4) and save the file. Now Right Click
on the project name and click Rebuild Project. Once the build is complete click on debug button, reset
CPU, restart, enable real time mode and run. Set “EnableFlag” to 1 in the watch window. The variable
named “IsrTicker” will be incrementally increased as seen in watch windows to confirm the interrupt
working properly.

In the software, the key variables to be adjusted are summarized below.

 DFuncDesired (Q15 format): for changing the PWM duty cycle in per-unit.
 CurrentSet (GLOBAL_Q format): for changing the reference DC-bus current in per-unit.
 ILoopFlag (Q0 format): for switching between fixed duty-cycle and controlled Idc duty-cycle.

The key steps can be explained as follows:

 Compile/load/run program with real time mode and then increase voltage at variac / dc power supply to
get the appropriate DC-bus voltage.

 The motor will gradually speed up and finally switch to closed loop commutation mode.

 Increase the motor speed by changing DFuncDesired.

 Now use the variable CurrentSet to specify the reference current for the PI controller PI. Once the
ClosedFlag set to 1 in the code, change ILoopflag to 1 to activate the current loop PI controller. Once
this is done, the PI controller will start to regulate the DC bus current and hence the motor current.
Gradually increase/decrease the command current (CurrentSet value) to change the torque command
and adjust PI gains. Note that the speed is not controlled in this step and a non-zero torque reference
will keep increasing the motor speed. Therefore, the motor should be loaded using a brake/generator
(or manually if the motor is small enough) after closing the loop. Initially apply relatively light load and
then gradually increase the amount of the load. If the applied load is higher than the torque reference,
the motor cannot handle the load and stops immediately after closing the current loop.

 Bring the system to a safe stop as described below by reducing the bus voltage, taking the controller
out of realtime mode and reset.

PWMDAC outputs should be appeared as follows:

Fig. 17 (a) mod6 counter, (b) HallGpioAccepted, (c) speed,
 (under 0.5 pu load, Vdcbus=160V)

 31

RampDelay

CmtnPeriod
Target DesiredInput Out

Ramp3DoneFlag

Period

Ramp3Delay

IMPULSE
MACRO Out TrigInput

BLDC
PWM
DRV

EV

HW

PWM 1

PWM 2

PWM 3

PWM 4

PWM 5

PWM 6

MOD6_CNT
MACRO

Counter CmtnPointer

MfuncPeriod

3-Phase
Inverter

ADCIn1ADCResult0Bemf A

ADCIn2

ADCIn3

ADCIn4

ADCResult1Bemf B

ADCResult2Bemf C

ADCResult3I_Shunt

BLDC
Motor

Level 4 Incremental System Build Block Diagram

ADC

CONV

ADC

HW

HALL

DRV

GPIO/
CAP

HW

Hall A

Hall B

Hall C

RC3
MACRO

RC2
MACRO

DutyFunc

Out

ClosedFlag=1

CmtnTrigHall

DesiredInputDFuncDesired

Ramp2Delay

HallMapPointerMod1.Counter
SPEED_PR

MACRO
VIRTUAL

TIMER
Virtual TimerTimeStamp

RefCurrentSet PID
 MACRO
Idc Reg.

Fdb

IloopFlag=1

Out

Level 4 Verifies the closed current loop and current PI controller.

 32

Level 5 Incremental Build

Assuming the previous section is completed successfully, this section verifies the closed loop speed PI
controller. Open HVBLDC_Sensored-Settings.h and select level 5 incremental build option by setting the
BUILDLEVEL to LEVEL5 (#define BUILDLEVEL LEVEL5). Now Right Click on the project name and
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real
time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will be
incrementally increased as seen in watch windows to confirm the interrupt working properly.

 SpeedRef (Q24): for changing the reference speed in per-unit.

The steps are explained as follows:

 Compile/load/run program with real time mode and then increase voltage at variac / dc power supply to
get the appropriate DC-bus voltage.

 The motor will gradually speed up and finally switch to closed loop commutation mode.

 Now use the variable SpeedRef to specify the reference speed for the PI controller PI. The
SpeedLoopFlag is automatically activated when the PI reference is ramped up from zero speed to
SpeedRef. Once this is done, the PI controller will start to regulate the motor speed. Gradually increase
the command speed (SpeedRef value) to increase the motor speed.

 Adjust speed PI gains to obtain the satisfied speed responses, if needed.

 Bring the system to a safe stop as described at the end of build 1 by reducing the bus voltage, taking
the controller out of realtime mode and reset.

 33

During running this level, the current waveforms in the CCS graphs should appear as follows:

PWMDAC outputs should be appeared as follows:

Fig. 18 (a) mod6 counter, (b)BemfA, (c) BemfB (c)BemfC
(under no-load at 0.5pu speed, Vdcbus=160V)

Fig. 19 (a) mod6 counter, (b)BemfA, (c) BemfB (c)BemfC
(under 0.5 pu load at 0.3pu speed, Vdcbus=160V)

C2000 Systems and Applications 34

RampDelay

CmtnPeriod
Target DesiredInput Out

Ramp3DoneFlag

Period

Ramp3Delay

IMPULSE
MACRO Out TrigInput

BLDC
PWM
DRV

EV

HW

PWM 1

PWM 2

PWM 3

PWM 4

PWM 5

PWM 6

MOD6_CNT
MACRO

Counter CmtnPointer

MfuncPeriod

3-Phase
Inverter

ADCIn1ADCResult0Bemf A

ADCIn2

ADCIn3

ADCIn4

ADCResult1Bemf B

ADCResult2Bemf C

ADCResult3I_Shunt

BLDC
Motor

Level 5 Incremental System Build Block Diagram

ADC

CONV

ADC

HW

HALL

DRV

GPIO/
CAP

HW

Hall A

Hall B

Hall C

RC3
MACRO

RC2
MACRO

DutyFunc

Out

ClosedFlag=1

CmtnTrigHall

DesiredInputDFuncDesired

Ramp2Delay

HallMapPointerMod1.CounterSPEED_PR
MACRO

VIRTUAL
TIMER

Virtual TimerTimeStamp

Ref

Fdb

Speedloop
Flag=1

Out

PID
 MACRO
Spd Reg.

Speed

RC
MACRO

SetPointValueTarget ValueSpeedRed

Level 5 Verifies the closed speed loop and speed PI controller.

C2000 Systems and Applications 35

