

Texas Instruments, Inc.
 C2000 Systems and Applications

2012

Digital Motor Control

Software Library:
F2803x Drivers

C2000 Systems and Applications 2

Contents

INTRODUCTION ... 3

ADC_ILEG_DRV ... 4
BLDC_PWM_DRV ... 6

CAP_EVENT_DRV .. 11

DATALOG.. 14

HALL3_DRV .. 19

PWMDAC_DRV ... 26
PWMDRV .. 30
QEP_DRV.. 33

C2000 Systems and Applications 3

Introduction
 The digital motor control library is composed of C functions (or macros) developed for C2000 motor
control users. These modules are represented as modular blocks in C2000 literature in order to explain
system-level block diagrams clearly by means of software modularity. The DMC library modules cover
nearly all of the target-independent mathematical macros and target-specific peripheral configuration
macros, which are essential for motor control. These modules can be classified as:

Transformation and
Observer Modules

Clarke, Park, Phase Voltage Calculation, Sliding Mode Observer, BEMF
Commutation, Direct Flux Estimator, Speed Calculators and Estimators,
Position Calculators and Estimators etc.

Signal Generators and
Control Modules

PID, Commutation Trigger Generator, V/f Controller, Impulse Generator,
Mod 6 Counter, Slew Rate Controllers, Sawtooth & Ramp generators,
Space Vector Generators etc.

Peripheral Drivers PWM abstraction for multiple topologies and techniques, ADC Drivers,
Hall Sensor Driver, QEP Driver, CAP Driver etc.

Real-Time Debugging
Modules

DLOG module for CCS graph window utility, PWMDAC module for
monitoring the control variables through socilloscope

 In the DMC library, each module is separately documented with source code, use, and background
technical theory. All DMC modules allow users to quickly build, or customize their own systems. The
library supports three principal motor types (induction motor, BLDC and PM motors) but is not limited to
these motors.

 The DMC library components have been used by TI to provide system-level motor control examples. In
the motor control code, all DMC library modules are initialized according to the system specific
parameters, and the modules are inter-connected to each other. At run-time the modules are called in
order. Each motor control system is built using an incremental build approach, which allows some
sections of the code to be built at a time, so that the developer can verify each section of the application
one step at a time. This is critical in real-time control applications, where so many different variables can
affect the system, and where many different motor parameters need to be tuned.

DIGITAL MOTOR CONTROL Software Library

C2000 Systems and Applications 4

ADC_ILEG_VDC ADC Driver

Description This module allows the user to configure analog-to-digital conversion (ADC)

channels. The conversions are triggered on end of conversion (EOC) which is set
to 4th conversion by default. In DMC projects, the converted results represent
load currents and DC-bus voltage but not limited to these.

Availability C interface version

Module Properties Type: Target Dependent, Application Independent

 Target Devices: 28x Fixed Point

C Version File Names: f2803xileg_vdc.h (for x2803x)

IQmath library files for C: N/A

C2000 Systems and Applications 5

ADC_ILEG_DRV C Interface

C Interface

Module Usage

Instantiation

 There is no instantiation for ADC configuration.

Initialization
 // Default ADC initialization
 int ChSel[16] = Default_ch_sel;
 int TrigSel[16] = Default_trig_sel;

int ACQPS[16] = Default_ACQPS;

where

ChSel [] stores which ADC pin is used for conversion when a Start of Conversion (SOC) trigger
is received for the respective channel

TrigSel [] stores what trigger input starts the conversion of the respective channel

ACQPS [] stores the acquisition window size used for the respective channel

Invoking the computation macro

ChSel[0]=x;
ChSel[1]=y;
ChSel[2]=z;

ADC_MACRO_INIT(ChSel,TrigSel,ACQPS);

Example
The following pseudo code provides the information about the module usage.

main()
{
 ChSel[1]=1; // ChSelect: ADC A1-> Phase A Current
 ChSel[2]=9; // ChSelect: ADC B1-> Phase B Current
 ChSel[3]=3; // ChSelect: ADC A3-> Phase C Current
 ChSel[7]=10; // ChSelect: ADC B2-> DC Bus Voltage

 ADC_MACRO_INIT(ChSel,TrigSel,ACQPS) // Call init macro for ADC INIT
}

void interrupt periodic_interrupt_isr()
{
clarke1.As = _IQmpy2(_IQ12toIQ(AdcResult.ADCRESULT1)-offsetA); // Phase A curr.
clarke1.Bs = _IQmpy2(_IQ12toIQ(AdcResult.ADCRESULT2)-offsetB); // Phase B curr.
volt1.DcBusVolt = _IQ12toIQ(AdcResult.ADCRESULT7); // DC Bus voltage meas.
}

C2000 Systems and Applications 6

BLDCPWM_DRV Three-phase BLDC PWM Driver

Description This module generates the 6 switching states of a 3-ph power inverter used to

drive a 3-ph BLDC motor. These switching states are determined by the input
variable CmtnPointer. The module also controls the PWM duty cycle by
calculating appropriate values for the compare registers. The duty cycle values
for the PWM outputs are determined by the input DutyFunc.

BLDCPWM
DRV

PWM
H/W

CmtnPointer

DutyFunc

MfuncPeriod

PWM 1/2

PWM 3/4

PWM 5/6

Availability C interface version

Module Properties Type: Target Dependent, Application Independent

 Target Devices: 28x Fixed Point

IQmath library files for C: IQmathLib.h, IQmath.lib

C Version File Names: f2803xbldcpwm.h (for x2803x)

C2000 Systems and Applications 7

BLDCPWM_DRV C Interface

C Interface

Object Definition

The structure of PWMGEN object is defined by following structure definition

typedef struct { Uint16 CmtnPointer; // Input: Commutation (or switching) state pointer input (Q0)
 int16 MfuncPeriod; // Input: Duty ratio of the PWM outputs (Q15)
 Uint16 PeriodMax; // Parameter: Maximum period (Q0)
 int16 DutyFunc; // Input: PWM period modulation input (Q15)
 Uint16 PwmActive; // Parameter: 0 = active low, 1 = active high (0 or 1)
 } PWMGEN;

Item Name Description Format Range(Hex)

Inputs

CmtnPointer
Commutation (or switching) state
pointer input Q0 0 - 5

MfuncPeriod Duty ratio of the PWM outputs Q15 8000-7FFF

DutyFunc PWM period modulation input Q15 8000-7FFF

Outputs
PWMx

Output signals from the 6 PWM
pins N/A 0-3.3 V

PWMGEN
parameter

PeriodMax PWM Period in CPU clock cycles Q0 8000-7FFF

PwmActive 0 = PWM active low
1 = PWM active high Q0 0 or 1

Special Constants and Data types

 PWMGEN

The module definition is created as a data type. This makes it convenient to instance an interface
to the PWMGEN driver. To create multiple instances of the module simply declare variables of
type PWMGEN.

PWMGEN_DEFAULTS
Structure symbolic constant to initialize PWMGEN module. This provides the initial values to the
terminal variables as well as method pointers.

C2000 Systems and Applications 8

BLDCPWM_DRV C Interface

This default definition of the object implements two methods – the initialization and the runtime
compute macro for PWMGEN generation. This is implemented by means of a macro pointer, and
the initializer sets this to BLDCPWM_INIT_MACRO and BLDCPWM_MACRO macros for x280x.
The argument to this macro is the address of the PWMGEN object.

Module Usage

Instantiation

 The following example instances one PWMGEN object
 PWMGEN pwm1;

Initialization
To Instance pre-initialized objects
PWMGEN pwm1 = PWMGEN_DEFAULTS;

Invoking the computation macro
BLDCPWM_INIT_MACRO (pwm1);
BLDCPWM_MACRO (pwm1);

Example
The following pseudo code provides the information about the module usage.

main()
{

 pwm1.PeriodMax = 7500; // PWM frequency = 20 kHz, clock = 150 MHz

BLDCPWM_INIT_MACRO(pwm1); // Call init macro for pwm1

}

void interrupt periodic_interrupt_isr()
{

 pwm1.CmtnPointer = (int)(CmtnPointer1); // CmtnPointer1 is in Q0
 pwm1.DutyFunc = (int)_IQtoIQ15(DutyFunc1); // DutyFunc1 is in GLOBAL_Q
 BLDCPWM_MACRO(pwm1); // Call update macro for pwm1

}

C2000 Systems and Applications 9

BLDCPWM_DRV C Interface

Technical Background

Figure 1 shows the 3-phase power inverter topology used to drive a 3-phase BLDC motor. In this
arrangement, the motor and inverter operation is characterized by a two phases ON operation.
This means that two of the three phases are always energized, while the third phase is turned off.
This is achieved by controlling the inverter switches in a periodic 6 switching or commutation
states. The bold arrows on the wires in Figure 1 indicate the current flowing through two motor
stator phases during one of these commutation states. The direction of current flowing into the
motor terminal is considered as positive, while the current flowing out of the motor terminal is
considered as negative. Therefore, in Figure 1, Ia is positive, Ib is negative and Ic is 0.

Figure 1: Three Phase Power Inverter for a BLDC Motor Drive

In this control scheme, torque production follows the principle that current should flow in only two
of the three phases at a time and that there should be no torque production in the region of Back
EMF zero crossings. Figure 2 depicts the phase current and Back EMF waveforms for a BLDC
motor during the two phases ON operation. All the 6 switching states of the inverter in Figure 1
are indicated in Figure 2 by S1 through S6. As evident from Figure 2, during each state only 2 of
the 6 switches are active, while the remaining 4 switches are turned OFF. Again, between the 2
active switches in each state, the odd numbered switch (Q1or Q3 or Q5) are controlled with PWM
signal while the even numbered switch (Q2 or Q4 or Q6) is turned fully ON. This results in motor
current flowing through only two of the three phases at a time. For example in state S1, Ia is
positive, Ib is negative and Ic is 0. This is achieved by driving Q1 with PWM signals and turning
Q4 fully ON. This state occurs when the value in the commutation state pointer variable,
CmtnPointer, is 0. Table 1 summarizes the state of the inverter switches.

Shunt
Resistor

Q1

Q2

Q3

Q4

Q5

Q6

FULL
COMPARE

UNIT

ADCINy

BLDC

C2000 Systems and Applications 10

BLDCPWM_DRV Technical Background

and the corresponding values of the related peripheral register, the commutation pointer and the
motor phase currents.

Figure 2: Phase Current and Back EMF Waveforms in 3-ph BLDC Motor control

State CmtnPointer ACTR Q1 Q2 Q3 Q4 Q5 Q6 Ia Ib Ic

S1 0 00C2 PWM OFF OFF ON OFF OFF +ve -ve 0
S2 1 0C02 PWM OFF OFF OFF OFF ON +ve 0 -ve
S3 2 0C20 OFF OFF PWM OFF OFF ON 0 +ve -ve
S4 3 002C OFF ON PWM OFF OFF OFF -ve +ve 0
S5 4 020C OFF ON OFF OFF PWM OFF -ve 0 +ve
S6 5 02C0 OFF OFF OFF ON PWM OFF 0 -ve +ve

Table 1: Commutation States in 3-ph BLDC Motor control

Ia Phase A

θ

Eb

Phase B

θ

Ea

Ic

Ec
Phase C

θ

Ib

S1 S2 S3 S4 S5 S6

C2000 Systems and Applications 11

CAP_DRV Capture Input Event Driver

Description This module provides the instantaneous value of the selected time base (GP

Timer) captured on the occurrence of an event. Such events can be any
specified transition of a signal applied at ECAP input pins of 280x devices.

CAP
MACRO

CAP
HW

CAPn TimeStamp

Availability C interface version

Module Properties Type: Target Dependent, Application Independent

 Target Devices: 28x Fixed Point

IQmath library files for C: IQmathLib.h, IQmath.lib

C Version File Names: f2803xcap.h (for x2803x)

C2000 Systems and Applications 12

CAP_DRV C Interface

C Interface

Object Definition

The structure of CAPTURE object is defined by following structure definition for x280x series

typedef struct { int32 EventPeriod; // Output: Timer value difference between two edges (Q0)
 Uint16 CapReturn; // Output: Status of one entry of first event of ECAP pin (Q0)
 } CAPTURE;

Item Name Description Format Range(Hex)
Inputs CAPn Capture input signals to 28x device N/A 0-3.3 v

Outputs
EventPeriod
(x280x)

Timer value difference between
two edges detected. 0 80000000-7FFFFFFF

CapReturn Ecap first event status 0 0-1

Special Constants and Data types

 CAPTURE

The module definition is created as a data type. This makes it convenient to instance an interface
to the CAPTURE driver. To create multiple instances of the module simply declare variables of
type CAPTURE.

 CAPTURE_DEFAULTS

Structure symbolic constant to initialize CAPTURE module. This provides the initial values to the
terminal variables as well as method pointers.

C2000 Systems and Applications 13

CAP_DRV C Interface

This default definition of the object implements two methods – the initialization and the runtime
compute macro for CAPTURE generation. This is implemented by means of a macro pointer, and
the initializer sets this to CAP_INIT_MACRO and CAP_MACRO macros for x280x. The argument
to this macro is the address of the CAPTURE object.

Module Usage

Instantiation

 The following example instances one CAPTURE object
 CAPTURE cap1;

Initialization
To Instance pre-initialized objects
CAPTURE cap1 = CAPTURE_DEFAULTS;

Invoking the computation macro
CAP_INIT_MACRO (1); // For cap#1
CAP_MACRO (1,cap1);

Example
The following pseudo code provides the information about the module usage.

main()
{

 CAP_INIT_MACRO(1); // Call init macro for cap1

}

void interrupt periodic_interrupt_isr()
{
 Uint16 CapReturn;
 Uint32 EventPeriod;

 CapReturn = CAP_MACRO(1,cap1);

 // if status==1 then a time stamp was not read,
 // if status==0 then a time stamp was read

 if(status==0)
 {
 EventPeriod=(int32)(cap1.EventPeriod); // Read out new time stamp
 }

}

C2000 Systems and Applications 14

DATALOG 4-Channel Data Logging Utility Module

Description This module stores the real-time values of four user selectable software Q15

variables in the data RAM provided on the 28xx DSP. Four variables are selected
by configuring four module inputs, iptr1, iptr2, iptr3 and iptr4, point to the address
of the four variables. The starting addresses of the four RAM locations, where the
data values are stored, are set to DLOG_4CH_buff1, DLOG_4CH_buff2,
DLOG_4CH_buff3, and DLOG_4CH_buff4. The DATALOG buffer size,
prescalar, and trigger value are also configurable.

DATALOG RAM
H/W

Iptr1

Iptr2

Iptr3

Iptr4

Availability C interface version

Module Properties Type: Target Dependent, Application Independent

 Target Devices: 28x Fixed Point

IQmath library files for C: IQmathLib.h, IQmath.lib

CcA Version File Names: dlog4chc.asm, dlog4ch.h

C2000 Systems and Applications 15

DATALOG C Interface

C Interface

Object Definition

The structure of DLOG_4CH object is defined by following structure definition

typedef struct { long task; // Variable: Task address pointer
 int *iptr1; // Input: First input pointer (Q15)
 int *iptr2; // Input: Second input pointer (Q15)
 int *iptr3; // Input: Third input pointer (Q15)
 int *iptr4; // Input: Fourth input pointer (Q15)
 int trig_value; // Input: Trigger point (Q15)
 int prescalar; // Parameter: Data log prescale
 int skip_cntr; // Variable: Data log skip counter
 int cntr; // Variable: Data log counter
 long write_ptr; // Variable: Graph address pointer
 int size; // Parameter: Maximum data buffer
 int (*init)(); // Pointer to init function
 int (*update)(); // Pointer to update function
 } DLOG_4CH;

Item Name Description Format Range(Hex)
Inputs iptr1 Input pointer for the first Q15

variable
Q0 00000000-FFFFFFFF

iptr2 Input pointer for the second Q15
variable

Q0 00000000-FFFFFFFF

iptr3 Input pointer for the third Q15
variable

Q0 00000000-FFFFFFFF

iptr4 Input pointer for the fourth Q15
variable

Q0 00000000-FFFFFFFF

Outputs
N/A Data RAM N/A N/A

DATALOG
Parameter

prescalar Data log prescaler Q0 0000-7FFF
trig_value Trigger point based on the fist Q15

variable
Q15 8000-7FFF

size Maximum data buffer Q0 0000-7FFF

Internal
skip_cntr Data log skip counter Q0 0000-7FFF

cntr Data log counter Q0 0000-7FFF
write_ptr Graph address pointer Q0 00000000-FFFFFFFF

task Task address pointer Q0 00000000-FFFFFFFF

Note: The trigger value is with reference to the input *iptr1. In accordance with this, the input
connected to channel 1 should be time varying, and the trigger value should be set up such that
input crosses the trigger value.

The other channels are captured synchronous to the channel 1. There is no trigger mechanism
on channels 2 through 4.

C2000 Systems and Applications 16

DATALOG C Interface

Special Constants and Data types

 DLOG_4CH

The module definition is created as a data type. This makes it convenient to instance an interface
to the DATALOG driver. To create multiple instances of the module simply declare variables of
type DLOG_4CH.

DLOG_4CH_handle
User defined Data type of pointer to DATALOG module

 DLOG_4CH_DEFAULTS

Structure symbolic constant to initialize DATALOG module. This provides the initial values to the
terminal variables as well as method pointers.

Methods

int DLOG_4CH_init(DLOG_4CH *);
int DLOG_4CH_update(DLOG_4CH *);

This default definition of the object implements two methods – the initialization and the runtime
update function for DATALOG. This is implemented by means of a function pointer, and the
initializer sets this to DLOG_4CH_init and DLOG_4CH_update functions for x281x/x280x. The
argument to this function is the address of the DATALOG object.

Module Usage

Instantiation

 The following example instances one DATALOG object
 DLOG_4CH dlog1;

Initialization
To Instance pre-initialized objects
DLOG_4CH dlog1 = DLOG_4CH_DEFAULTS;

Invoking the computation function
dlog1.init(&dlog1);
dlog1.update(&dlog1);

C2000 Systems and Applications 17

DATALOG C Interface

Example

The following pseudo code provides the information about the module usage.

main()
{

dlog1.iptr1 = &Q15_var1; // Pass input to DATALOG module
dlog1.iptr2 = &Q15_var2; // Pass input to DATALOG module
dlog1.iptr3 = &Q15_var3; // Pass input to DATALOG module
dlog1.iptr4 = &Q15_var4; // Pass input to DATALOG module

 dlog1.trig_value = 0x0; // Pass input to DATALOG module
 dlog1.size = 0x400; // Pass input to DATALOG module
 dlog1.prescalar = 1; // Pass input to DATALOG module
 dlog1.init(dlog1); // Call init function for dlog1
}

void interrupt periodic_interrupt_isr()
{

dlog1.update(&dlog1); // Call update function for dlog1

}

C2000 Systems and Applications 18

DATALOG Technical Background

Technical Background

This software module stores up to four real-time Q15 values of each of the selected input
variables in the data RAM as illustrated in the following figures. The starting addresses of four
RAM sections, where the data values are stored, are set to DLOG_4CH_buff1,
DLOG_4CH_buff2, DLOG_4CH_buff3, and DLOG_4CH_buff4.

To show four stored Q15 variables in CCS graphs properly, the properties of two dual time
graphs for these variables should be configured as shown in the following figures. In the software,
the default buffer size is 0x400. The sampling rate is usually same as ISR frequency. In this case,
it is 20 kHz with the prescalar of 1.

iptr2 DLOG_4CH_buff2
DATA
RAM

input_var2

DLOG 4CH buff2 + size

iptr1 DLOG_4CH_buff1
DATA
RAM

input_var1

DLOG_4CH_buff1 + size

iptr3 DLOG_4CH_buff3
DATA
RAM

input_var3

DLOG_4CH_buff3 + size

iptr4 DLOG_4CH_buff4
DATA
RAM

input_var4

DLOG 4CH buff4 + size

C2000 Systems and Applications 19

HALL3_DRV Hall effect interface driver for sensored BLDC control

Description This module produces a commutation trigger for a 3-ph BLDC motor, based on

hall signals received on GPIO pins 24, 25, and 26. Edges detected are validated
or debounced, to eliminate false edges often occurring from motor oscillations.
The software attempts all (6) possible commutation states to initiate motor
movement. Once the motor starts moving, commutation occurs on each
debounced edge from received hall signals.

CmtnTrigHall

HallMapPointer

Hall A

Hall B

Hall C

EV
H/W HALL 3 DRV

Availability C interface version

Module Properties Type: Target Dependent, Application Independent

 Target Devices: 28x Fixed Point

IQmath library files for C: IQmathLib.h, IQmath.lib

C Version File Names: f2803xhall3.h (for x2803x)

C2000 Systems and Applications 20

HALL3_DRV C Interface

C Interface

Object Definition

The structure of HALL3 object is defined by following structure definition

typedef struct { Uint16 CmtnTrigHall; // Output: Commutation trigger for Mod6cnt input
 Uint16 CapCounter; // Variable: Running cnt of detected edges on CAP/GPIO
 Uint16 DebounceCount; // Variable: Counter/debounce delay current value
 Uint16 DebounceAmount; // Parameter: Counter delay amount to
 // validate/debounce GPIO readings
 Uint16 HallGpio; // Variable: Most recent logic level on CAP/GPIO
 Uint16 HallGpioBuffer; // Variable: Buffer of last logic level on CAP/GPIO while
 // being debounced
 Uint16 HallGpioAccepted; // Variable: Debounced logic level on CAP/GPIO
 Uint16 EdgeDebounced; // Variable: Trigger from Debounce macro to Hall_Drv,
 // if = 0x7FFF edge is debounced
 Uint16 HallMap[6]; // Variable: CAP/GPIO logic levels for HallMapPointer = 0-5

 Uint16 CapFlag; // Variable: CAP flags, indicating which CAP/GPIO detected
 // the edge

 Uint16 StallCount; // Variable: If motor stalls, this counter overflows triggers
 // commutation to start rotation. Rotation is defined as
 // an edge detection of a hall signal.
 Uint16 HallMapPointer; // Input/Output: During the map created, this variable points
 // to the current commutation state. After map creation, it
 // points to the next commutation state.
 int16 Revolutions; // Parameter: Running counter, with a revolution defined as 1-
 // cycle of the 6 hall stateson
 } HALL3;

C2000 Systems and Applications 21

HALL3_DRV C Interface

Item Name Description Format Range(Hex)

Inputs
CAP/GPIO CAP/GPIO inputs (H/W) N/A 0-3.3 v

HallMapPointer
As an input, it is defined by
MOD6_CNT Q0 0 - 5

Outputs

CmtnTrigHall Commutation trigger for Mod6cnt
input Q0 0 or 7FFF

HallMapPointer

During hall map creation, this
variable points to the current
commutation state. After map
creation, it points to the next
commutation state.

Q0 0 - 5

HALL3
parameter

DebounceAmount
Counter delay amount to
validate/debounce GPIO
readings

Q0 0000-7FFF

Revolutions
Running counter, with a
revolution defined as 1-cycle of
the 6 hall states

Q0 8000-7FFF

Internal

CapCounter Running count of detected edges
on CAP/GPIO Q0 0000-7FFF

DebounceCount Counter/debounce delay current
value Q0 0000-7FFF

HallGpio Most recent logic level on
CAP/GPIO Q0 0000-0007

HallGpioBuffer
Buffer of last logic level on
CAP/GPIO while being
debounced

Q0 0000-0007

HallGpioAccepted Debounced logic level on
CAP/GPIO Q0 0000-0007

EdgeDebounced
Trigger from Debounce macro to
Hall_Drv, if = 0x7FFF edge is
debounced

Q0 0 or 7FFF

HallMap[6] CAP/GPIO logic levels for
HallMapPointer = 0-5 Q0 0000-0007

CapFlag CAP flags, indicating which
CAP/GPIO detected the edge Q0 0000-0007

StallCount

If motor stalls, this counter
overflow triggers commutation to
start rotation. Rotation is defined
as an edge detection of a hall
signal.

Q0 0000-FFFF

Special Constants and Data types

 HALL3

The module definition is created as a data type. This makes it convenient to instance an interface
to the HALL3 driver. To create multiple instances of the module simply declare variables of type
HALL3.

 HALL3_DEFAULTS

Structure symbolic constant to initialize HALL3 module. This provides the initial values to the
terminal variables as well as method pointers.

C2000 Systems and Applications 22

HALL3_DRV C Interface

This default definition of the object implements two methods – the initialization and the runtime
compute macro for HALL3. This is implemented by means of a macro pointer, and the initializer
sets this to HALL3_INIT_MACRO and HALL3_READ_MACRO macros for x280x. The argument
to this macro is the address of the HALL3 object.

Module Usage

Instantiation

 The following example instances one HALL3 object
 HALL3 hall;

Initialization
To Instance pre-initialized objects
HALL3 hall = HALL3_DEFAULTS;

Invoking the computation macro
HALL3_INIT_MACRO (hall);
HALL3_READ_MACRO (hall);

Example
The following pseudo code provides the information about the module usage.

main()
{

 HALL3_INIT_MACRO (hall); // Call init macro for hall3

}

void interrupt periodic_interrupt_isr()
{

 HALL3_READ_MACRO (hall); // Call the hall3 read macro

}

C2000 Systems and Applications 23

Start : Hall3_DRV

Hall edge
detected ?

Clear all capture
interrupt flags

Call " Determine_State" - Read

GPIOshared with CAP/
Call "Hall_ Debounce" -

Debounce detected edge for
current motor position

Set hall commutation
trigger

Current
position

debounced ?

End: Hall3_Drv

Yes

No

Yes

Call "Next_ State_Ptr" - If current position is
debounced, find match in table and return

pointer to current state. Ptr to be incremented
by MOD6CNT after RET.

No

GPIO

HALL3_DRV C Interface

Software Flowcharts

C2000 Systems and Applications 24

HALL3_DRV C Interface

Start:
Hall_Debounce

Is current
position same
as debounced

position ?

Has motor been at
current position for the

duration of the
debounce time ?

End: Hall3_Drv

No

Is current
position same
as last position

?

Save new position for
comparison on next loopNo

Yes

Increment debounce counterNo

Position has been debounced. Reset
debounce counter, store position and

set debounce flag.

Yes

Is # of Revs <=
0 ?

Call "Create_Map"

Yes No

Yes

C2000 Systems and Applications 25

Start :
Determine_State

Set CAP/ as GPIO Inputs

Read logic levels on GPIOs and save to
memory (3-bits, right justified)

Reset CAP/GPIOs to use capture logic

End :
Determine_State

GPIO

HALL3_DRV C Interface

C2000 Systems and Applications 26

PWMDAC_DRV 2-Channel PWM DAC Driver

Description This module converts any s/w variables into the PWM signals in EPWMxA/B for

2803x. Thus, it can be used to view the signal, represented by the variable, at the
outputs of the PWMxA, PWMxB, pins through the external low-pass filters.

PWMDAC
DRV

PWMxAMfuncC1

PWMxBMfuncC2 PWM
HW

Availability C interface version

Module Properties Type: Target Dependent, Application Independent

 Target Devices: 28x Fixed Point

IQmath library files for C: IQmathLib.h, IQmath.lib

C Version File Names: f2803xpwmdac.h (for x2803x)

C2000 Systems and Applications 27

PWMDAC_DRV C Interface

C Interface

Object Definition

The structure of PWMDAC object is defined by following structure definition

typedef struct {
 _iq MfuncC1; // Input: PWM 1 Duty cycle ratio (Q24)

 _iq MfuncC2; // Input: PWM 2 Duty cycle ratio (Q24)
 Uint16 PeriodMax; // Parameter: PWMDAC half period in number of clocks (Q0)

Uint16 HalfPerMax; // Parameter: Half of PeriodMax
 } PWMDAC;

Item Name Description Format Range(Hex)
Inputs MfuncCx PWM duty cycle ratio Q24 (-224,224)

Outputs PWMxA/B Output signals from the
PWMxA/B pins N/A 0-3.3 V

PWMDAC
parameter

PeriodMax PWMDAC half period in number
of clocks Q0 8000-7FFF

HalfPerMax Half of PeriodMax Q0 8000-7FFF

Special Constants and Data types

 PWMDAC

The module definition is created as a data type. This makes it convenient to instance an interface
to the PWMDAC driver. To create multiple instances of the module simply declare variables of
type PWMDAC.

 PWMDAC_DEFAULTS

Structure symbolic constant to initialize PWMDAC module. This provides the initial values to the
terminal variables as well as method pointers.

C2000 Systems and Applications 28

PWMDAC_DRV C Interface

This default definition of the object implements two methods – the initialization and the runtime
compute macro for PWMDAC generation. This is implemented by means of a macro pointer, and
the initializer sets this to PWMDAC_INIT_MACRO and PWMDAC_MACRO macros for x280x.
The argument to this macro is the address of the PWMDAC object.

Module Usage

Instantiation

 The following example instances one PWMDAC object
 PWMDAC pwmdac1;

Initialization
To Instance pre-initialized objects
PWMDAC pwmdac1 = PWMDAC_DEFAULTS;

Invoking the computation macro
PWMDAC_INIT_MACRO(pwmdac1);
PWMDAC_MACRO(pwmdac1);

Example

The following pseudo code provides the information about the module usage.

main()
{
 pwmdac1.PeriodMax=500; // @60Mhz clock freq, PWM freq = 60kHz
 PWMDAC_INIT_MACRO (6, pwmdac1) // PWM 6A,6B
}

void interrupt periodic_interrupt_isr()
{
 pwmdac1.MfuncC1 = variable1; // variable1 is in GLOBAL_Q
 pwmdac1.MfuncC2 = variable2; // variable2 is in GLOBAL_Q
 PWMDAC_MACRO (6,pwmdac1) // update macro for pwmdac1 for PWM ch #6
}

C2000 Systems and Applications 29

PWMDAC_DRV Technical Background

Technical Background

The external low-pass filters are necessary to view the actual signal waveforms as seen in Figure
1. The (1st-order) RC low-pass filter can be simply used for filter out the high frequency
component embedded in the actual low frequency signals. To select R and C values, its time
constant can be expressed in term of cut-off frequency (fc) as follow:

cf2

1RC
π

==τ (1)

x280x
DSP

PWMx

PWMy

PWMz

GND

R

C

Scope

Scope

Figure 1: External RC low-lass filter connecting to PWMx pin in x280x DSP

C2000 Systems and Applications 30

PWM_DRV PWM Driver

Description This module uses the duty ratio information and calculates the compare values

for generating PWM outputs. The compare values are used in the full compare
EPWM unit in 280x. This also allows PWM period modulation.

Availability C interface version

Module Properties Type: Target Dependent, Application Independent

 Target Devices: 28x Fixed Point

IQmath library files for C: IQmathLib.h, IQmath.lib

C Version File Names: f2803xpwm.h (for x2803x)

C2000 Systems and Applications 31

PWM_DRV C Interface

C Interface

Object Definition

The structure of PWMGEN object is defined by following structure definition

typedef struct { Uint16 PeriodMax; // Parameter: PWM Half-Period in CPU clock cycles (Q0)
 Uint16 HalfPerMax; // Parameter: Half of PeriodMax (Q0)
 Uint16 Deadband; // Parameter: PWM deadband in CPU clock cycles (Q0)

 _iq MfuncC1; // Input: PWM 1 Duty cycle ratio (Q24)
 _iq MfuncC2; // Input: PWM 2 Duty cycle ratio (Q24)
 _iq MfuncC3; // Input: PWM 3 Duty cycle ratio (Q24)
 } PWMGEN;

Item Name Description Format Range(Hex)
Inputs MfuncCx PWM duty cycle ratio Q24 (-224,224)

Outputs PWMx Output signals from the 6 PWM
pins N/A 0-3.3 V

PWMGEN
parameter

PeriodMax PWM Half-Period in CPU clock
cycles Q0 8000-7FFF

HalfPerMax Half of PeriodMax Q0 8000-7FFF

Deadband PWM deadband in CPU clock
cycles Q0 8000-7FFF

Special Constants and Data types

 PWMGEN

The module definition is created as a data type. This makes it convenient to instance an interface
to the PWMGEN driver. To create multiple instances of the module simply declare variables of
type PWMGEN.

 PWMGEN_DEFAULTS

Structure symbolic constant to initialize PWMGEN module. This provides the initial values to the
terminal variables as well as method pointers.

C2000 Systems and Applications 32

PWM_DRV C Interface

This default definition of the object implements two methods – the initialization and the runtime
compute macro for PWMGEN generation. This is implemented by means of a pointer, and the
initializer sets this to PWM_INIT_MACRO and PWM_MACRO macros for x280x. The argument to
this macro is the address of the PWMGEN object.

Module Usage

Instantiation

 The following example instances one PWMGEN object
 PWMGEN pwm1;

Initialization
To Instance pre-initialized object
PWMGEN pwm1 = PWMGEN_DEFAULTS;

Invoking the computation macro
PWM_INIT_MACRO (pwm1);
PWM_MACRO (pwm1);

Example
The following pseudo code provides the information about the module usage.

main()
{

 pwm1.PeriodMax = 3000; // PWM frequency = 10 kHz, clock = 60 MHz

 pwm1.HalfPerMax = pwm1.PeriodMax/2;
 PWM_INIT_MACRO (pwm1); // Call init macro for pwm1

}

void interrupt periodic_interrupt_isr()
{

 pwm1.MfuncC1 = svgen_dq1.Ta; // svgen_dq1.Ta is in GLOBAL_Q
 pwm1.MfuncC2 = svgen_dq1.Tb; // svgen_dq1.Tb is in GLOBAL_Q
 pwm1.MfuncC3 = svgen_dq1.Tc; // svgen_dq1.Tc is in GLOBAL_Q
 PWM_MACRO (1,2,3,pwm1); // Call update macro for pwm1 for PWM ch #1,2,3

}

C2000 Systems and Applications 33

QEP_DRV Quadrature Encoder Pulse Driver

Description This module determines the rotor position and generates a direction (of rotation)

signal from the shaft position encoder pulses.

Availability C interface version

Module Properties Type: Target Dependent, Application Independent

 Target Devices: 28x Fixed Point

IQmath library files for C: IQmathLib.h, IQmath.lib

C Version File Names: f2803xqep.h (for x2803x)

C2000 Systems and Applications 34

QEP_DRV C Interface

C Interface

Object Definition

The structure of QEP object is defined by following structure definition

typedef struct { int32 ElecTheta; // Output: Motor Electrical angle (Q24)
 int32 MechTheta; // Output: Motor Mechanical Angle (Q24)
 Uint16 DirectionQep; // Output: Motor rotation direction (Q0)
 Uint16 QepPeriod; // Output: Capture period of QEP signal (Q0)
 Uint32 QepCountIndex; // Variable: Encoder counter index (Q0)
 int32 RawTheta; // Variable: Raw angle from EQEP position counter (Q0)
 Uint32 MechScaler; // Parameter: 0.9999/total count (Q30)
 Uint16 LineEncoder; // Parameter: Number of line encoder (Q0)
 Uint16 PolePairs; // Parameter: Number of pole pairs (Q0)
 int32 CalibratedAngle; // Parameter: Raw offset between encoder and ph-a (Q0)
 Uint16 IndexSyncFlag; // Output: Index sync status (Q0)
 } QEP;

C2000 Systems and Applications 35

QEP_DRV C Interface

Item Name Description Format Range(Hex)

Inputs

QEP_A QEP_A signal applied to QEP1-A N/A 0-3.3 v

QEP_B QEP_A signal applied to QEP1-B N/A 0-3.3 v

QEP_Index
QEP_Index signal applied to
QEP1-I N/A 0-3.3 v

Outputs

ElecTheta Motor Electrical angle Q15 (281x)
Q24 (280x)

0000-7FFF
00000000-7FFFFFFF
(0 – 360 degree)

MechTheta Motor Mechanical Angle Q15 (281x)
Q24 (280x)

0000-7FFF
00000000-7FFFFFFF
(0 – 360 degree)

DirectionQep Motor rotation direction Q0 0 or 1
IndexSyncFlag Index sync status Q0 0 or F0

QEP
parameter

MechScaler* MechScaler = 1/total count,
total count = 4*no_lines_encoder Q30 00000000-7FFFFFFF

PolePairs Number of pole pairs Q0 1,2,3,…

CalibratedAngle Raw offset between encoder and
phase a Q0 8000-7FFF

Internal
QepCountIndex Encoder counter index Q0 8000-7FFF
RawTheta Raw angle from Timer 2 Q0 8000-7FFF

*MechScaler in Q30 is defined by a 32-bit word-length

Special Constants and Data types

 QEP

The module definition is created as a data type. This makes it convenient to instance an interface
to the QEP driver. To create multiple instances of the module simply declare variables of type
QEP.

 QEP_DEFAULTS

Structure symbolic constant to initialize QEP module. This provides the initial values to the
terminal variables as well as method pointers.

This default definition of the object implements three methods – the initialization, the runtime
compute, and interrupt macros for QEP generation. This is implemented by means of a macro
pointer, and the initializer sets this to QEP_INIT_MACRO, and QEP_MACRO macros for x280x.
The argument to this macro is the address of the QEP object.

C2000 Systems and Applications 36

QEP_DRV C Interface

Module Usage

Instantiation

 The following example instances one QEP object
 QEP qep1;

Initialization
To Instance pre-initialized objects
QEP qep1 = QEP_DEFAULTS;

Invoking the computation macro
QEP_INIT_MACRO (1, qep1);
QEP_MACRO (1, qep1);

The index event handler resets the QEP counter, and synchronizes the software/hardware
counters to the index pulse. Also it sets the QEP IndexSyncFlag variable to reflect that an index
sync has occurred.

The index handler is invoked in an interrupt service routine. Of course the system framework
must ensure that the index signal is connected to the correct pin and the appropriate interrupt is
enabled and so on.

Example
The following pseudo code provides the information about the module usage.

main()
{

 QEP_INIT_MACRO(1,qep1); // Call init macro for qep1

}

void interrupt periodic_interrupt_isr()
{

 QEP_MACRO(1,qep1); // Call compute macro for qep1

}

C2000 Systems and Applications 37

QEP_DRV Technical Background

Technical Background

Figure 1. Speed sensor disk

Figure 1 shows a typical speed sensor disk mounted on a motor shaft for motor speed, position
and direction sensing applications. When the motor rotates, the sensor generates two quadrature
pulses and one index pulse. These signals are shown in Figure 2 as QEP_A, QEP_B and
QEP_index.

Figure 2. Quadrature encoder pulses, decoded timer clock and direction signal.

QEP_A

QEP_B

QEP_index

QEP CLK
(H/W)

DIR
(H/W)

One revolution
(360 mechanical degrees)

Example:
1000 QEP pulses
 = 4000 counter “ticks,” per 360°

1 2 3 4
1000 θ1

θ2

∆ θ

index

ω

C2000 Systems and Applications 38

QEP_DRV Technical Background

For the x280x devices, QEP_A and QEP_B signals are applied to the EQEP1A and EQEP1B
pins, respectively. The QEP_index signal is applied to the EQEP1I pin. And the position counter
is obtained by QPOSCNT register.

Now the number of pulses generated by the speed sensor is proportional to the angular
displacement of the motor shaft. In Figure 1, a complete 360° rotation of motor shaft generates
1000 pulses of each of the signals QEP_A and QEP_B. The QEP circuit in 281x counts both
edges of the two QEP pulses. Therefore, the frequency of the counter clock, QEP_CLK, is four
times that of each input sequence. This means, for 1000 pulses for each of QEP_A and QEP_B,
the number of counter clock cycles will be 4000. Since the counter value is proportional to the
number of QEP pulses, therefore, it is also proportional to the angular displacement of the motor
shaft.

For the x280x devices, the QDF bit in QEOSTS register is used to check the rotational direction.
The index pulse resets the timer counter T2CNT and sets the index synchronization flag
IndexSyncFlag to 00F0. Thus the counter T2CNT gets reset and starts counting the QEP_CLK
pulses every time a QEP_index high pulse is generated.

To determine the rotor position at any instant of time, the counter value(T2CNT) is read and
saved in the variable RawTheta. This value indicates the clock pulse count at that instant of time.
Therefore, RawTheta is a measure of the rotor mechanical displacement in terms of the number
of clock pulses. From this value of RawTheta, the corresponding per unit mechanical
displacement of the rotor, MechTheta, is calculated as follows:

Since the maximum number of clock pulses in one revolution is 4000, i.e., maximum count value
is 4000, then a coefficient, MechScaler, can be defined as,

Then, the pu mechanical displacement, for a count value of RawTheta, is given by,

If the number of pole pair is polepairs, then the pu electrical displacement is given by,

()
)30(/16777

/4000/1
)(13604000 0

Qincountntdisplacememechpu
countntdisplacememechpuMechScaler

ntdisplacememechanicalpuunitpermechanicalMechScaler

=
=⇒

==×

RawThetaMechScalerMechTheta ×=

MechThetaPolePairsElecTheta ×=

C2000 Systems and Applications 39

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue any
product or service without notice. Customers should obtain the latest relevant information before placing orders and
should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of
sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to
support this warranty. Except where mandated by government requirements, testing of all parameters of each product is
not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their
products and applications using TI components. To minimize the risks associated with customer products and
applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in
which TI products or services are used. Information published by TI regarding third-party products or services does not
constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such
information may require a license from a third party under the patents or other intellectual property of the third party, or a
license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and
is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with
alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.
Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or
service voids all express and any implied warranties for the associated TI product or service and is an unfair and
deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product
would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an
agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and
regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal,
regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical
applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers
must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-
critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI
products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as
military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has
not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all
legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI
products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if
they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such
requirements.

	Software Library
	Outputs
	PWMGEN parameter
	Outputs
	Outputs
	DATALOG Parameter
	Internal
	Outputs
	HALL3
	Internal
	Outputs
	PWMDAC parameter
	Outputs
	PWMGEN parameter
	Outputs
	QEP parameter
	Internal

	C Interface
	C Interface
	Special Constants and Data types
	Technical Background
	C Interface
	Special Constants and Data types
	C Interface
	Special Constants and Data types
	Methods
	Technical Background
	C Interface
	Special Constants and Data types
	Software Flowcharts
	C Interface
	Special Constants and Data types
	Technical Background
	C Interface
	Special Constants and Data types
	C Interface
	Special Constants and Data types
	Technical Background

