12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import os
- import os.path as osp
- import warnings
- from argparse import ArgumentParser
- import requests
- from mmpose.apis import (inference_bottom_up_pose_model,
- inference_top_down_pose_model, init_pose_model,
- vis_pose_result)
- from mmpose.models import AssociativeEmbedding, TopDown
- def parse_args():
- parser = ArgumentParser()
- parser.add_argument('img', help='Image file')
- parser.add_argument('config', help='Config file')
- parser.add_argument('checkpoint', help='Checkpoint file')
- parser.add_argument('model_name', help='The model name in the server')
- parser.add_argument(
- '--inference-addr',
- default='127.0.0.1:8080',
- help='Address and port of the inference server')
- parser.add_argument(
- '--device', default='cuda:0', help='Device used for inference')
- parser.add_argument(
- '--out-dir', default='vis_results', help='Visualization output path')
- args = parser.parse_args()
- return args
- def main(args):
- os.makedirs(args.out_dir, exist_ok=True)
- # Inference single image by native apis.
- model = init_pose_model(args.config, args.checkpoint, device=args.device)
- if isinstance(model, TopDown):
- pytorch_result, _ = inference_top_down_pose_model(
- model, args.img, person_results=None)
- elif isinstance(model, (AssociativeEmbedding, )):
- pytorch_result, _ = inference_bottom_up_pose_model(model, args.img)
- else:
- raise NotImplementedError()
- vis_pose_result(
- model,
- args.img,
- pytorch_result,
- out_file=osp.join(args.out_dir, 'pytorch_result.png'))
- # Inference single image by torchserve engine.
- url = 'http://' + args.inference_addr + '/predictions/' + args.model_name
- with open(args.img, 'rb') as image:
- response = requests.post(url, image)
- server_result = response.json()
- vis_pose_result(
- model,
- args.img,
- server_result,
- out_file=osp.join(args.out_dir, 'torchserve_result.png'))
- if __name__ == '__main__':
- args = parse_args()
- main(args)
- # Following strings of text style are from colorama package
- bright_style, reset_style = '\x1b[1m', '\x1b[0m'
- red_text, blue_text = '\x1b[31m', '\x1b[34m'
- white_background = '\x1b[107m'
- msg = white_background + bright_style + red_text
- msg += 'DeprecationWarning: This tool will be deprecated in future. '
- msg += blue_text + 'Welcome to use the unified model deployment toolbox '
- msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
- msg += reset_style
- warnings.warn(msg)
|