123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import torch
- from torch.nn.modules.batchnorm import _BatchNorm
- from mmpose.models.backbones import SCNet
- from mmpose.models.backbones.scnet import SCBottleneck, SCConv
- class TestSCnet(TestCase):
- @staticmethod
- def is_block(modules):
- """Check if is SCNet building block."""
- if isinstance(modules, (SCBottleneck, )):
- return True
- return False
- @staticmethod
- def is_norm(modules):
- """Check if is one of the norms."""
- if isinstance(modules, (_BatchNorm, )):
- return True
- return False
- @staticmethod
- def all_zeros(modules):
- """Check if the weight(and bias) is all zero."""
- weight_zero = torch.equal(modules.weight.data,
- torch.zeros_like(modules.weight.data))
- if hasattr(modules, 'bias'):
- bias_zero = torch.equal(modules.bias.data,
- torch.zeros_like(modules.bias.data))
- else:
- bias_zero = True
- return weight_zero and bias_zero
- @staticmethod
- def check_norm_state(modules, train_state):
- """Check if norm layer is in correct train state."""
- for mod in modules:
- if isinstance(mod, _BatchNorm):
- if mod.training != train_state:
- return False
- return True
- def test_scnet_scconv(self):
- # Test scconv forward
- layer = SCConv(64, 64, 1, 4)
- x = torch.randn(1, 64, 56, 56)
- x_out = layer(x)
- self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56]))
- def test_scnet_bottleneck(self):
- # Test Bottleneck forward
- block = SCBottleneck(64, 64)
- x = torch.randn(1, 64, 56, 56)
- x_out = block(x)
- self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56]))
- def test_scnet_backbone(self):
- """Test scnet backbone."""
- with self.assertRaises(KeyError):
- # SCNet depth should be in [50, 101]
- SCNet(20)
- with self.assertRaises(TypeError):
- # pretrained must be a string path
- model = SCNet(50)
- model.init_weights(pretrained=0)
- # Test SCNet norm_eval=True
- model = SCNet(50, norm_eval=True)
- model.init_weights()
- model.train()
- self.assertTrue(self.check_norm_state(model.modules(), False))
- # Test SCNet50 with first stage frozen
- frozen_stages = 1
- model = SCNet(50, frozen_stages=frozen_stages)
- model.init_weights()
- model.train()
- self.assertFalse(model.norm1.training)
- for layer in [model.conv1, model.norm1]:
- for param in layer.parameters():
- self.assertFalse(param.requires_grad)
- for i in range(1, frozen_stages + 1):
- layer = getattr(model, f'layer{i}')
- for mod in layer.modules():
- if isinstance(mod, _BatchNorm):
- self.assertFalse(mod.training)
- for param in layer.parameters():
- self.assertFalse(param.requires_grad)
- # Test SCNet with BatchNorm forward
- model = SCNet(50, out_indices=(0, 1, 2, 3))
- for m in model.modules():
- if self.is_norm(m):
- self.assertIsInstance(m, _BatchNorm)
- model.init_weights()
- model.train()
- imgs = torch.randn(2, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 4)
- self.assertEqual(feat[0].shape, torch.Size([2, 256, 56, 56]))
- self.assertEqual(feat[1].shape, torch.Size([2, 512, 28, 28]))
- self.assertEqual(feat[2].shape, torch.Size([2, 1024, 14, 14]))
- self.assertEqual(feat[3].shape, torch.Size([2, 2048, 7, 7]))
- # Test SCNet with layers 1, 2, 3 out forward
- model = SCNet(50, out_indices=(0, 1, 2))
- model.init_weights()
- model.train()
- imgs = torch.randn(2, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 3)
- self.assertEqual(feat[0].shape, torch.Size([2, 256, 56, 56]))
- self.assertEqual(feat[1].shape, torch.Size([2, 512, 28, 28]))
- self.assertEqual(feat[2].shape, torch.Size([2, 1024, 14, 14]))
- # Test SEResNet50 with layers 3 (top feature maps) out forward
- model = SCNet(50, out_indices=(3, ))
- model.init_weights()
- model.train()
- imgs = torch.randn(2, 3, 224, 224)
- feat = model(imgs)
- self.assertIsInstance(feat, tuple)
- self.assertEqual(feat[-1].shape, torch.Size([2, 2048, 7, 7]))
- # Test SEResNet50 with checkpoint forward
- model = SCNet(50, out_indices=(0, 1, 2, 3), with_cp=True)
- for m in model.modules():
- if self.is_block(m):
- self.assertTrue(m.with_cp)
- model.init_weights()
- model.train()
- imgs = torch.randn(2, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 4)
- self.assertEqual(feat[0].shape, torch.Size([2, 256, 56, 56]))
- self.assertEqual(feat[1].shape, torch.Size([2, 512, 28, 28]))
- self.assertEqual(feat[2].shape, torch.Size([2, 1024, 14, 14]))
- self.assertEqual(feat[3].shape, torch.Size([2, 2048, 7, 7]))
- # Test SCNet zero initialization of residual
- model = SCNet(50, out_indices=(0, 1, 2, 3), zero_init_residual=True)
- model.init_weights()
- for m in model.modules():
- if isinstance(m, SCBottleneck):
- self.assertTrue(self.all_zeros(m.norm3))
- model.train()
- imgs = torch.randn(2, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 4)
- self.assertEqual(feat[0].shape, torch.Size([2, 256, 56, 56]))
- self.assertEqual(feat[1].shape, torch.Size([2, 512, 28, 28]))
- self.assertEqual(feat[2].shape, torch.Size([2, 1024, 14, 14]))
- self.assertEqual(feat[3].shape, torch.Size([2, 2048, 7, 7]))
|