rtmpose-m_8xb64-120e_lapa-256x256.py 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241
  1. _base_ = ['mmpose::_base_/default_runtime.py']
  2. # runtime
  3. max_epochs = 120
  4. stage2_num_epochs = 10
  5. base_lr = 4e-3
  6. train_cfg = dict(max_epochs=max_epochs, val_interval=1)
  7. randomness = dict(seed=21)
  8. # optimizer
  9. optim_wrapper = dict(
  10. type='OptimWrapper',
  11. optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
  12. paramwise_cfg=dict(
  13. norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
  14. # learning rate
  15. param_scheduler = [
  16. dict(
  17. type='LinearLR',
  18. start_factor=1.0e-5,
  19. by_epoch=False,
  20. begin=0,
  21. end=1000),
  22. dict(
  23. # use cosine lr from 150 to 300 epoch
  24. type='CosineAnnealingLR',
  25. eta_min=base_lr * 0.05,
  26. begin=max_epochs // 2,
  27. end=max_epochs,
  28. T_max=max_epochs // 2,
  29. by_epoch=True,
  30. convert_to_iter_based=True),
  31. ]
  32. # automatically scaling LR based on the actual training batch size
  33. auto_scale_lr = dict(base_batch_size=512)
  34. # codec settings
  35. codec = dict(
  36. type='SimCCLabel',
  37. input_size=(256, 256),
  38. sigma=(5.66, 5.66),
  39. simcc_split_ratio=2.0,
  40. normalize=False,
  41. use_dark=False)
  42. # model settings
  43. model = dict(
  44. type='TopdownPoseEstimator',
  45. data_preprocessor=dict(
  46. type='PoseDataPreprocessor',
  47. mean=[123.675, 116.28, 103.53],
  48. std=[58.395, 57.12, 57.375],
  49. bgr_to_rgb=True),
  50. backbone=dict(
  51. _scope_='mmdet',
  52. type='CSPNeXt',
  53. arch='P5',
  54. expand_ratio=0.5,
  55. deepen_factor=0.67,
  56. widen_factor=0.75,
  57. out_indices=(4, ),
  58. channel_attention=True,
  59. norm_cfg=dict(type='SyncBN'),
  60. act_cfg=dict(type='SiLU'),
  61. init_cfg=dict(
  62. type='Pretrained',
  63. prefix='backbone.',
  64. checkpoint='https://download.openmmlab.com/mmpose/v1/projects/'
  65. 'rtmposev1/cspnext-m_udp-aic-coco_210e-256x192-f2f7d6f6_20230130.pth' # noqa
  66. )),
  67. head=dict(
  68. type='RTMCCHead',
  69. in_channels=768,
  70. out_channels=106,
  71. input_size=codec['input_size'],
  72. in_featuremap_size=(8, 8),
  73. simcc_split_ratio=codec['simcc_split_ratio'],
  74. final_layer_kernel_size=7,
  75. gau_cfg=dict(
  76. hidden_dims=256,
  77. s=128,
  78. expansion_factor=2,
  79. dropout_rate=0.,
  80. drop_path=0.,
  81. act_fn='SiLU',
  82. use_rel_bias=False,
  83. pos_enc=False),
  84. loss=dict(
  85. type='KLDiscretLoss',
  86. use_target_weight=True,
  87. beta=10.,
  88. label_softmax=True),
  89. decoder=codec),
  90. test_cfg=dict(flip_test=True, ))
  91. # base dataset settings
  92. dataset_type = 'LapaDataset'
  93. data_mode = 'topdown'
  94. data_root = 'data/LaPa/'
  95. backend_args = dict(backend='local')
  96. # pipelines
  97. train_pipeline = [
  98. dict(type='LoadImage', backend_args=backend_args),
  99. dict(type='GetBBoxCenterScale'),
  100. dict(type='RandomFlip', direction='horizontal'),
  101. dict(type='RandomHalfBody'),
  102. dict(
  103. type='RandomBBoxTransform', scale_factor=[0.5, 1.5], rotate_factor=80),
  104. dict(type='TopdownAffine', input_size=codec['input_size']),
  105. dict(type='mmdet.YOLOXHSVRandomAug'),
  106. dict(type='PhotometricDistortion'),
  107. dict(
  108. type='Albumentation',
  109. transforms=[
  110. dict(type='Blur', p=0.2),
  111. dict(type='MedianBlur', p=0.2),
  112. dict(
  113. type='CoarseDropout',
  114. max_holes=1,
  115. max_height=0.4,
  116. max_width=0.4,
  117. min_holes=1,
  118. min_height=0.2,
  119. min_width=0.2,
  120. p=1.0),
  121. ]),
  122. dict(type='GenerateTarget', encoder=codec),
  123. dict(type='PackPoseInputs')
  124. ]
  125. val_pipeline = [
  126. dict(type='LoadImage', backend_args=backend_args),
  127. dict(type='GetBBoxCenterScale'),
  128. dict(type='TopdownAffine', input_size=codec['input_size']),
  129. dict(type='PackPoseInputs')
  130. ]
  131. train_pipeline_stage2 = [
  132. dict(type='LoadImage', backend_args=backend_args),
  133. dict(type='GetBBoxCenterScale'),
  134. dict(type='RandomFlip', direction='horizontal'),
  135. dict(type='RandomHalfBody'),
  136. dict(
  137. type='RandomBBoxTransform',
  138. shift_factor=0.,
  139. scale_factor=[0.75, 1.25],
  140. rotate_factor=60),
  141. dict(type='TopdownAffine', input_size=codec['input_size']),
  142. dict(type='mmdet.YOLOXHSVRandomAug'),
  143. dict(
  144. type='Albumentation',
  145. transforms=[
  146. dict(type='Blur', p=0.1),
  147. dict(type='MedianBlur', p=0.1),
  148. dict(
  149. type='CoarseDropout',
  150. max_holes=1,
  151. max_height=0.4,
  152. max_width=0.4,
  153. min_holes=1,
  154. min_height=0.2,
  155. min_width=0.2,
  156. p=0.5),
  157. ]),
  158. dict(type='GenerateTarget', encoder=codec),
  159. dict(type='PackPoseInputs')
  160. ]
  161. # data loaders
  162. train_dataloader = dict(
  163. batch_size=32,
  164. num_workers=10,
  165. persistent_workers=True,
  166. sampler=dict(type='DefaultSampler', shuffle=True),
  167. dataset=dict(
  168. type=dataset_type,
  169. data_root=data_root,
  170. data_mode=data_mode,
  171. ann_file='annotations/lapa_trainval.json',
  172. data_prefix=dict(img=''),
  173. pipeline=train_pipeline,
  174. ))
  175. val_dataloader = dict(
  176. batch_size=32,
  177. num_workers=10,
  178. persistent_workers=True,
  179. drop_last=False,
  180. sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
  181. dataset=dict(
  182. type=dataset_type,
  183. data_root=data_root,
  184. data_mode=data_mode,
  185. ann_file='annotations/lapa_test.json',
  186. data_prefix=dict(img=''),
  187. test_mode=True,
  188. pipeline=val_pipeline,
  189. ))
  190. test_dataloader = dict(
  191. batch_size=32,
  192. num_workers=10,
  193. persistent_workers=True,
  194. drop_last=False,
  195. sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
  196. dataset=dict(
  197. type=dataset_type,
  198. data_root=data_root,
  199. data_mode=data_mode,
  200. ann_file='annotations/lapa_test.json',
  201. data_prefix=dict(img=''),
  202. test_mode=True,
  203. pipeline=val_pipeline,
  204. ))
  205. # hooks
  206. default_hooks = dict(
  207. checkpoint=dict(
  208. save_best='NME', rule='less', max_keep_ckpts=1, interval=1))
  209. custom_hooks = [
  210. dict(
  211. type='EMAHook',
  212. ema_type='ExpMomentumEMA',
  213. momentum=0.0002,
  214. update_buffers=True,
  215. priority=49),
  216. dict(
  217. type='mmdet.PipelineSwitchHook',
  218. switch_epoch=max_epochs - stage2_num_epochs,
  219. switch_pipeline=train_pipeline_stage2)
  220. ]
  221. # evaluators
  222. val_evaluator = dict(
  223. type='NME',
  224. norm_mode='keypoint_distance',
  225. )
  226. test_evaluator = val_evaluator