123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import argparse
- import time
- from typing import List, Tuple
- import cv2
- import loguru
- import numpy as np
- import onnxruntime as ort
- logger = loguru.logger
- def parse_args():
- parser = argparse.ArgumentParser(
- description='RTMPose ONNX inference demo.')
- parser.add_argument('onnx_file', help='ONNX file path')
- parser.add_argument('image_file', help='Input image file path')
- parser.add_argument(
- '--device', help='device type for inference', default='cpu')
- parser.add_argument(
- '--save-path',
- help='path to save the output image',
- default='output.jpg')
- args = parser.parse_args()
- return args
- def preprocess(
- img: np.ndarray, input_size: Tuple[int, int] = (192, 256)
- ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
- """Do preprocessing for RTMPose model inference.
- Args:
- img (np.ndarray): Input image in shape.
- input_size (tuple): Input image size in shape (w, h).
- Returns:
- tuple:
- - resized_img (np.ndarray): Preprocessed image.
- - center (np.ndarray): Center of image.
- - scale (np.ndarray): Scale of image.
- """
- # get shape of image
- img_shape = img.shape[:2]
- bbox = np.array([0, 0, img_shape[1], img_shape[0]])
- # get center and scale
- center, scale = bbox_xyxy2cs(bbox, padding=1.25)
- # do affine transformation
- resized_img, scale = top_down_affine(input_size, scale, center, img)
- # normalize image
- mean = np.array([123.675, 116.28, 103.53])
- std = np.array([58.395, 57.12, 57.375])
- resized_img = (resized_img - mean) / std
- return resized_img, center, scale
- def build_session(onnx_file: str, device: str = 'cpu') -> ort.InferenceSession:
- """Build onnxruntime session.
- Args:
- onnx_file (str): ONNX file path.
- device (str): Device type for inference.
- Returns:
- sess (ort.InferenceSession): ONNXRuntime session.
- """
- providers = ['CPUExecutionProvider'
- ] if device == 'cpu' else ['CUDAExecutionProvider']
- sess = ort.InferenceSession(path_or_bytes=onnx_file, providers=providers)
- return sess
- def inference(sess: ort.InferenceSession, img: np.ndarray) -> np.ndarray:
- """Inference RTMPose model.
- Args:
- sess (ort.InferenceSession): ONNXRuntime session.
- img (np.ndarray): Input image in shape.
- Returns:
- outputs (np.ndarray): Output of RTMPose model.
- """
- # build input
- input = [img.transpose(2, 0, 1)]
- # build output
- sess_input = {sess.get_inputs()[0].name: input}
- sess_output = []
- for out in sess.get_outputs():
- sess_output.append(out.name)
- # run model
- outputs = sess.run(sess_output, sess_input)
- return outputs
- def postprocess(outputs: List[np.ndarray],
- model_input_size: Tuple[int, int],
- center: Tuple[int, int],
- scale: Tuple[int, int],
- simcc_split_ratio: float = 2.0
- ) -> Tuple[np.ndarray, np.ndarray]:
- """Postprocess for RTMPose model output.
- Args:
- outputs (np.ndarray): Output of RTMPose model.
- model_input_size (tuple): RTMPose model Input image size.
- center (tuple): Center of bbox in shape (x, y).
- scale (tuple): Scale of bbox in shape (w, h).
- simcc_split_ratio (float): Split ratio of simcc.
- Returns:
- tuple:
- - keypoints (np.ndarray): Rescaled keypoints.
- - scores (np.ndarray): Model predict scores.
- """
- # use simcc to decode
- simcc_x, simcc_y = outputs
- keypoints, scores = decode(simcc_x, simcc_y, simcc_split_ratio)
- # rescale keypoints
- keypoints = keypoints / model_input_size * scale + center - scale / 2
- return keypoints, scores
- def visualize(img: np.ndarray,
- keypoints: np.ndarray,
- scores: np.ndarray,
- filename: str = 'output.jpg',
- thr=0.3) -> np.ndarray:
- """Visualize the keypoints and skeleton on image.
- Args:
- img (np.ndarray): Input image in shape.
- keypoints (np.ndarray): Keypoints in image.
- scores (np.ndarray): Model predict scores.
- thr (float): Threshold for visualize.
- Returns:
- img (np.ndarray): Visualized image.
- """
- # default color
- skeleton = [(15, 13), (13, 11), (16, 14), (14, 12), (11, 12), (5, 11),
- (6, 12), (5, 6), (5, 7), (6, 8), (7, 9), (8, 10), (1, 2),
- (0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6), (15, 17),
- (15, 18), (15, 19), (16, 20), (16, 21), (16, 22), (91, 92),
- (92, 93), (93, 94), (94, 95), (91, 96), (96, 97), (97, 98),
- (98, 99), (91, 100), (100, 101), (101, 102), (102, 103),
- (91, 104), (104, 105), (105, 106), (106, 107), (91, 108),
- (108, 109), (109, 110), (110, 111), (112, 113), (113, 114),
- (114, 115), (115, 116), (112, 117), (117, 118), (118, 119),
- (119, 120), (112, 121), (121, 122), (122, 123), (123, 124),
- (112, 125), (125, 126), (126, 127), (127, 128), (112, 129),
- (129, 130), (130, 131), (131, 132)]
- palette = [[51, 153, 255], [0, 255, 0], [255, 128, 0], [255, 255, 255],
- [255, 153, 255], [102, 178, 255], [255, 51, 51]]
- link_color = [
- 1, 1, 2, 2, 0, 0, 0, 0, 1, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2,
- 2, 2, 2, 2, 2, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 1, 1, 1, 1, 2, 2, 2,
- 2, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 1, 1, 1, 1
- ]
- point_color = [
- 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2,
- 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 1, 1, 1, 1, 3, 2, 2, 2, 2, 4, 4, 4,
- 4, 5, 5, 5, 5, 6, 6, 6, 6, 1, 1, 1, 1
- ]
- # draw keypoints and skeleton
- for kpts, score in zip(keypoints, scores):
- for kpt, color in zip(kpts, point_color):
- cv2.circle(img, tuple(kpt.astype(np.int32)), 1, palette[color], 1,
- cv2.LINE_AA)
- for (u, v), color in zip(skeleton, link_color):
- if score[u] > thr and score[v] > thr:
- cv2.line(img, tuple(kpts[u].astype(np.int32)),
- tuple(kpts[v].astype(np.int32)), palette[color], 2,
- cv2.LINE_AA)
- # save to local
- cv2.imwrite(filename, img)
- return img
- def bbox_xyxy2cs(bbox: np.ndarray,
- padding: float = 1.) -> Tuple[np.ndarray, np.ndarray]:
- """Transform the bbox format from (x,y,w,h) into (center, scale)
- Args:
- bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted
- as (left, top, right, bottom)
- padding (float): BBox padding factor that will be multilied to scale.
- Default: 1.0
- Returns:
- tuple: A tuple containing center and scale.
- - np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or
- (n, 2)
- - np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or
- (n, 2)
- """
- # convert single bbox from (4, ) to (1, 4)
- dim = bbox.ndim
- if dim == 1:
- bbox = bbox[None, :]
- # get bbox center and scale
- x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3])
- center = np.hstack([x1 + x2, y1 + y2]) * 0.5
- scale = np.hstack([x2 - x1, y2 - y1]) * padding
- if dim == 1:
- center = center[0]
- scale = scale[0]
- return center, scale
- def _fix_aspect_ratio(bbox_scale: np.ndarray,
- aspect_ratio: float) -> np.ndarray:
- """Extend the scale to match the given aspect ratio.
- Args:
- scale (np.ndarray): The image scale (w, h) in shape (2, )
- aspect_ratio (float): The ratio of ``w/h``
- Returns:
- np.ndarray: The reshaped image scale in (2, )
- """
- w, h = np.hsplit(bbox_scale, [1])
- bbox_scale = np.where(w > h * aspect_ratio,
- np.hstack([w, w / aspect_ratio]),
- np.hstack([h * aspect_ratio, h]))
- return bbox_scale
- def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray:
- """Rotate a point by an angle.
- Args:
- pt (np.ndarray): 2D point coordinates (x, y) in shape (2, )
- angle_rad (float): rotation angle in radian
- Returns:
- np.ndarray: Rotated point in shape (2, )
- """
- sn, cs = np.sin(angle_rad), np.cos(angle_rad)
- rot_mat = np.array([[cs, -sn], [sn, cs]])
- return rot_mat @ pt
- def _get_3rd_point(a: np.ndarray, b: np.ndarray) -> np.ndarray:
- """To calculate the affine matrix, three pairs of points are required. This
- function is used to get the 3rd point, given 2D points a & b.
- The 3rd point is defined by rotating vector `a - b` by 90 degrees
- anticlockwise, using b as the rotation center.
- Args:
- a (np.ndarray): The 1st point (x,y) in shape (2, )
- b (np.ndarray): The 2nd point (x,y) in shape (2, )
- Returns:
- np.ndarray: The 3rd point.
- """
- direction = a - b
- c = b + np.r_[-direction[1], direction[0]]
- return c
- def get_warp_matrix(center: np.ndarray,
- scale: np.ndarray,
- rot: float,
- output_size: Tuple[int, int],
- shift: Tuple[float, float] = (0., 0.),
- inv: bool = False) -> np.ndarray:
- """Calculate the affine transformation matrix that can warp the bbox area
- in the input image to the output size.
- Args:
- center (np.ndarray[2, ]): Center of the bounding box (x, y).
- scale (np.ndarray[2, ]): Scale of the bounding box
- wrt [width, height].
- rot (float): Rotation angle (degree).
- output_size (np.ndarray[2, ] | list(2,)): Size of the
- destination heatmaps.
- shift (0-100%): Shift translation ratio wrt the width/height.
- Default (0., 0.).
- inv (bool): Option to inverse the affine transform direction.
- (inv=False: src->dst or inv=True: dst->src)
- Returns:
- np.ndarray: A 2x3 transformation matrix
- """
- shift = np.array(shift)
- src_w = scale[0]
- dst_w = output_size[0]
- dst_h = output_size[1]
- # compute transformation matrix
- rot_rad = np.deg2rad(rot)
- src_dir = _rotate_point(np.array([0., src_w * -0.5]), rot_rad)
- dst_dir = np.array([0., dst_w * -0.5])
- # get four corners of the src rectangle in the original image
- src = np.zeros((3, 2), dtype=np.float32)
- src[0, :] = center + scale * shift
- src[1, :] = center + src_dir + scale * shift
- src[2, :] = _get_3rd_point(src[0, :], src[1, :])
- # get four corners of the dst rectangle in the input image
- dst = np.zeros((3, 2), dtype=np.float32)
- dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
- dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
- dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])
- if inv:
- warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src))
- else:
- warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst))
- return warp_mat
- def top_down_affine(input_size: dict, bbox_scale: dict, bbox_center: dict,
- img: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
- """Get the bbox image as the model input by affine transform.
- Args:
- input_size (dict): The input size of the model.
- bbox_scale (dict): The bbox scale of the img.
- bbox_center (dict): The bbox center of the img.
- img (np.ndarray): The original image.
- Returns:
- tuple: A tuple containing center and scale.
- - np.ndarray[float32]: img after affine transform.
- - np.ndarray[float32]: bbox scale after affine transform.
- """
- w, h = input_size
- warp_size = (int(w), int(h))
- # reshape bbox to fixed aspect ratio
- bbox_scale = _fix_aspect_ratio(bbox_scale, aspect_ratio=w / h)
- # get the affine matrix
- center = bbox_center
- scale = bbox_scale
- rot = 0
- warp_mat = get_warp_matrix(center, scale, rot, output_size=(w, h))
- # do affine transform
- img = cv2.warpAffine(img, warp_mat, warp_size, flags=cv2.INTER_LINEAR)
- return img, bbox_scale
- def get_simcc_maximum(simcc_x: np.ndarray,
- simcc_y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
- """Get maximum response location and value from simcc representations.
- Note:
- instance number: N
- num_keypoints: K
- heatmap height: H
- heatmap width: W
- Args:
- simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx)
- simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy)
- Returns:
- tuple:
- - locs (np.ndarray): locations of maximum heatmap responses in shape
- (K, 2) or (N, K, 2)
- - vals (np.ndarray): values of maximum heatmap responses in shape
- (K,) or (N, K)
- """
- N, K, Wx = simcc_x.shape
- simcc_x = simcc_x.reshape(N * K, -1)
- simcc_y = simcc_y.reshape(N * K, -1)
- # get maximum value locations
- x_locs = np.argmax(simcc_x, axis=1)
- y_locs = np.argmax(simcc_y, axis=1)
- locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
- max_val_x = np.amax(simcc_x, axis=1)
- max_val_y = np.amax(simcc_y, axis=1)
- # get maximum value across x and y axis
- mask = max_val_x > max_val_y
- max_val_x[mask] = max_val_y[mask]
- vals = max_val_x
- locs[vals <= 0.] = -1
- # reshape
- locs = locs.reshape(N, K, 2)
- vals = vals.reshape(N, K)
- return locs, vals
- def decode(simcc_x: np.ndarray, simcc_y: np.ndarray,
- simcc_split_ratio) -> Tuple[np.ndarray, np.ndarray]:
- """Modulate simcc distribution with Gaussian.
- Args:
- simcc_x (np.ndarray[K, Wx]): model predicted simcc in x.
- simcc_y (np.ndarray[K, Wy]): model predicted simcc in y.
- simcc_split_ratio (int): The split ratio of simcc.
- Returns:
- tuple: A tuple containing center and scale.
- - np.ndarray[float32]: keypoints in shape (K, 2) or (n, K, 2)
- - np.ndarray[float32]: scores in shape (K,) or (n, K)
- """
- keypoints, scores = get_simcc_maximum(simcc_x, simcc_y)
- keypoints /= simcc_split_ratio
- return keypoints, scores
- def main():
- args = parse_args()
- logger.info('Start running model on RTMPose...')
- # read image from file
- logger.info('1. Read image from {}...'.format(args.image_file))
- img = cv2.imread(args.image_file)
- # build onnx model
- logger.info('2. Build onnx model from {}...'.format(args.onnx_file))
- sess = build_session(args.onnx_file, args.device)
- h, w = sess.get_inputs()[0].shape[2:]
- model_input_size = (w, h)
- # preprocessing
- logger.info('3. Preprocess image...')
- resized_img, center, scale = preprocess(img, model_input_size)
- # inference
- logger.info('4. Inference...')
- start_time = time.time()
- outputs = inference(sess, resized_img)
- end_time = time.time()
- logger.info('4. Inference done, time cost: {:.4f}s'.format(end_time -
- start_time))
- # postprocessing
- logger.info('5. Postprocess...')
- keypoints, scores = postprocess(outputs, model_input_size, center, scale)
- # visualize inference result
- logger.info('6. Visualize inference result...')
- visualize(img, keypoints, scores, args.save_path)
- logger.info('Done...')
- if __name__ == '__main__':
- main()
|