@misc{https://doi.org/10.48550/arxiv.2303.07399,
doi = {10.48550/ARXIV.2303.07399},
url = {https://arxiv.org/abs/2303.07399},
author = {Jiang, Tao and Lu, Peng and Zhang, Li and Ma, Ningsheng and Han, Rui and Lyu, Chengqi and Li, Yining and Chen, Kai},
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {RTMPose: Real-Time Multi-Person Pose Estimation based on MMPose},
publisher = {arXiv},
year = {2023},
copyright = {Creative Commons Attribution 4.0 International}
}
@misc{lyu2022rtmdet,
title={RTMDet: An Empirical Study of Designing Real-Time Object Detectors},
author={Chengqi Lyu and Wenwei Zhang and Haian Huang and Yue Zhou and Yudong Wang and Yanyi Liu and Shilong Zhang and Kai Chen},
year={2022},
eprint={2212.07784},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}
}
Results on COCO-WholeBody v1.0 val with detector having human AP of 56.4 on COCO val2017 dataset
Arch | Input Size | Body AP | Body AR | Foot AP | Foot AR | Face AP | Face AR | Hand AP | Hand AR | Whole AP | Whole AR | ckpt | log |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rtmpose-m | 256x192 | 0.697 | 0.743 | 0.660 | 0.749 | 0.822 | 0.858 | 0.483 | 0.564 | 0.604 | 0.667 | ckpt | log |
rtmpose-l | 256x192 | 0.721 | 0.764 | 0.693 | 0.780 | 0.844 | 0.876 | 0.523 | 0.600 | 0.632 | 0.694 | ckpt | log |
rtmpose-l | 384x288 | 0.736 | 0.776 | 0.738 | 0.810 | 0.895 | 0.918 | 0.591 | 0.659 | 0.670 | 0.723 | ckpt | log |