DJW cdece0b32a 第一次提交 пре 10 месеци
..
300w cdece0b32a 第一次提交 пре 10 месеци
aflw cdece0b32a 第一次提交 пре 10 месеци
coco_wholebody_face cdece0b32a 第一次提交 пре 10 месеци
cofw cdece0b32a 第一次提交 пре 10 месеци
wflw cdece0b32a 第一次提交 пре 10 месеци
README.md cdece0b32a 第一次提交 пре 10 месеци

README.md

Top-down heatmap-based pose estimation

Top-down methods divide the task into two stages: object detection, followed by single-object pose estimation given object bounding boxes. Instead of estimating keypoint coordinates directly, the pose estimator will produce heatmaps which represent the likelihood of being a keypoint, following the paradigm introduced in Simple Baselines for Human Pose Estimation and Tracking.

Results and Models

300W Dataset

Results on 300W dataset

Model Input Size NMEcommon NMEchallenge NMEfull NMEtest Details and Download
HRNetv2-w18 256x256 2.92 5.64 3.45 4.10 hrnetv2_300w.md

AFLW Dataset

Results on AFLW dataset

Model Input Size NMEfull NMEfrontal Details and Download
HRNetv2-w18+Dark 256x256 1.35 1.19 hrnetv2_dark_aflw.md
HRNetv2-w18 256x256 1.41 1.27 hrnetv2_aflw.md

COCO-WholeBody-Face Dataset

Results on COCO-WholeBody-Face val set

Model Input Size NME Details and Download
HRNetv2-w18+Dark 256x256 0.0513 hrnetv2_dark_coco_wholebody_face.md
SCNet-50 256x256 0.0567 scnet_coco_wholebody_face.md
HRNetv2-w18 256x256 0.0569 hrnetv2_coco_wholebody_face.md
ResNet-50 256x256 0.0582 resnet_coco_wholebody_face.md
HourglassNet 256x256 0.0587 hourglass_coco_wholebody_face.md
MobileNet-v2 256x256 0.0611 mobilenetv2_coco_wholebody_face.md

COFW Dataset

Results on COFW dataset

Model Input Size NME Details and Download
HRNetv2-w18 256x256 3.48 hrnetv2_cofw.md

WFLW Dataset

Results on WFLW dataset

Model Input Size NMEtest NMEpose NMEillumination NMEocclusion NMEblur NMEmakeup NMEexpression Details and Download
HRNetv2-w18+Dark 256x256 3.98 6.98 3.96 4.78 4.56 3.89 4.29 hrnetv2_dark_wflw.md
HRNetv2-w18+AWing 256x256 4.02 6.94 3.97 4.78 4.59 3.87 4.28 hrnetv2_awing_wflw.md
HRNetv2-w18 256x256 4.06 6.97 3.99 4.83 4.58 3.94 4.33 hrnetv2_wflw.md