DJW cdece0b32a 第一次提交 9 months ago
..
coco cdece0b32a 第一次提交 9 months ago
mpii cdece0b32a 第一次提交 9 months ago
README.md cdece0b32a 第一次提交 9 months ago

README.md

Top-down regression-based pose estimation

Top-down methods divide the task into two stages: object detection, followed by single-object pose estimation given object bounding boxes. At the 2nd stage, regression based methods directly regress the keypoint coordinates given the features extracted from the bounding box area, following the paradigm introduced in Deeppose: Human pose estimation via deep neural networks.

Results and Models

COCO Dataset

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Model Input Size AP AR Details and Download
ResNet-152+RLE 256x192 0.731 0.805 resnet_rle_coco.md
ResNet-101+RLE 256x192 0.722 0.768 resnet_rle_coco.md
ResNet-50+RLE 256x192 0.706 0.768 resnet_rle_coco.md
MobileNet-v2+RLE 256x192 0.593 0.644 mobilenetv2_rle_coco.md
ResNet-152 256x192 0.584 0.688 resnet_coco.md
ResNet-101 256x192 0.562 0.670 resnet_coco.md
ResNet-50 256x192 0.528 0.639 resnet_coco.md

MPII Dataset

Model Input Size PCKh@0.5 PCKh@0.1 Details and Download
ResNet-50+RLE 256x256 0.861 0.277 resnet_rle_mpii.md
ResNet-152 256x256 0.850 0.208 resnet_mpii.md
ResNet-101 256x256 0.841 0.200 resnet_mpii.md
ResNet-50 256x256 0.826 0.180 resnet_mpii.md