@inproceedings{xiao2018simple,
title={Simple baselines for human pose estimation and tracking},
author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={466--481},
year={2018}
}
@inproceedings{he2016deep,
title={Deep residual learning for image recognition},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={770--778},
year={2016}
}
@inproceedings{andriluka2018posetrack,
title={Posetrack: A benchmark for human pose estimation and tracking},
author={Andriluka, Mykhaylo and Iqbal, Umar and Insafutdinov, Eldar and Pishchulin, Leonid and Milan, Anton and Gall, Juergen and Schiele, Bernt},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={5167--5176},
year={2018}
}
Results on PoseTrack2018 val with ground-truth bounding boxes
Arch | Input Size | Head | Shou | Elb | Wri | Hip | Knee | Ankl | Total | ckpt | log |
---|---|---|---|---|---|---|---|---|---|---|---|
pose_resnet_50 | 256x192 | 86.5 | 87.7 | 82.5 | 75.8 | 80.1 | 78.8 | 74.2 | 81.2 | ckpt | log |
The models are first pre-trained on COCO dataset, and then fine-tuned on PoseTrack18.