vipnas_coco.yml 1.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940
  1. Collections:
  2. - Name: ViPNAS
  3. Paper:
  4. Title: 'ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search'
  5. URL: https://arxiv.org/abs/2105.10154
  6. README: https://github.com/open-mmlab/mmpose/blob/main/docs/src/papers/backbones/vipnas.md
  7. Models:
  8. - Config: configs/body_2d_keypoint/topdown_heatmap/coco/td-hm_vipnas-mbv3_8xb64-210e_coco-256x192.py
  9. In Collection: ViPNAS
  10. Metadata:
  11. Architecture: &id001
  12. - ViPNAS
  13. Training Data: COCO
  14. Name: td-hm_vipnas-mbv3_8xb64-210e_coco-256x192
  15. Results:
  16. - Dataset: COCO
  17. Metrics:
  18. AP: 0.7
  19. AP@0.5: 0.887
  20. AP@0.75: 0.783
  21. AR: 0.758
  22. AR@0.5: 0.929
  23. Task: Body 2D Keypoint
  24. Weights: (https://download.openmmlab.com/mmpose/v1/body_2d_keypoint/topdown_heatmap/coco/td-hm_vipnas-mbv3_8xb64-210e_coco-256x192-e0987441_20221010.pth
  25. - Config: configs/body_2d_keypoint/topdown_heatmap/coco/td-hm_vipnas-res50_8xb64-210e_coco-256x192.py
  26. In Collection: ViPNAS
  27. Metadata:
  28. Architecture: *id001
  29. Training Data: COCO
  30. Name: td-hm_vipnas-res50_8xb64-210e_coco-256x192
  31. Results:
  32. - Dataset: COCO
  33. Metrics:
  34. AP: 0.711
  35. AP@0.5: 0.894
  36. AP@0.75: 0.787
  37. AR: 0.769
  38. AR@0.5: 0.934
  39. Task: Body 2D Keypoint
  40. Weights: https://download.openmmlab.com/mmpose/v1/body_2d_keypoint/topdown_heatmap/coco/td-hm_vipnas-res50_8xb64-210e_coco-256x192-35d4bff9_20220917.pth