shelf.py 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151
  1. dataset_info = dict(
  2. dataset_name='shelf',
  3. paper_info=dict(
  4. author='Belagiannis, Vasileios and Amin, Sikandar and Andriluka, '
  5. 'Mykhaylo and Schiele, Bernt and Navab, Nassir and Ilic, Slobodan',
  6. title='3D Pictorial Structures for Multiple Human Pose Estimation',
  7. container='IEEE Computer Society Conference on Computer Vision and '
  8. 'Pattern Recognition (CVPR)',
  9. year='2014',
  10. homepage='http://campar.in.tum.de/Chair/MultiHumanPose',
  11. ),
  12. keypoint_info={
  13. 0:
  14. dict(
  15. name='right_ankle',
  16. id=0,
  17. color=[255, 128, 0],
  18. type='lower',
  19. swap='left_ankle'),
  20. 1:
  21. dict(
  22. name='right_knee',
  23. id=1,
  24. color=[255, 128, 0],
  25. type='lower',
  26. swap='left_knee'),
  27. 2:
  28. dict(
  29. name='right_hip',
  30. id=2,
  31. color=[255, 128, 0],
  32. type='lower',
  33. swap='left_hip'),
  34. 3:
  35. dict(
  36. name='left_hip',
  37. id=3,
  38. color=[0, 255, 0],
  39. type='lower',
  40. swap='right_hip'),
  41. 4:
  42. dict(
  43. name='left_knee',
  44. id=4,
  45. color=[0, 255, 0],
  46. type='lower',
  47. swap='right_knee'),
  48. 5:
  49. dict(
  50. name='left_ankle',
  51. id=5,
  52. color=[0, 255, 0],
  53. type='lower',
  54. swap='right_ankle'),
  55. 6:
  56. dict(
  57. name='right_wrist',
  58. id=6,
  59. color=[255, 128, 0],
  60. type='upper',
  61. swap='left_wrist'),
  62. 7:
  63. dict(
  64. name='right_elbow',
  65. id=7,
  66. color=[255, 128, 0],
  67. type='upper',
  68. swap='left_elbow'),
  69. 8:
  70. dict(
  71. name='right_shoulder',
  72. id=8,
  73. color=[255, 128, 0],
  74. type='upper',
  75. swap='left_shoulder'),
  76. 9:
  77. dict(
  78. name='left_shoulder',
  79. id=9,
  80. color=[0, 255, 0],
  81. type='upper',
  82. swap='right_shoulder'),
  83. 10:
  84. dict(
  85. name='left_elbow',
  86. id=10,
  87. color=[0, 255, 0],
  88. type='upper',
  89. swap='right_elbow'),
  90. 11:
  91. dict(
  92. name='left_wrist',
  93. id=11,
  94. color=[0, 255, 0],
  95. type='upper',
  96. swap='right_wrist'),
  97. 12:
  98. dict(
  99. name='bottom_head',
  100. id=12,
  101. color=[51, 153, 255],
  102. type='upper',
  103. swap=''),
  104. 13:
  105. dict(
  106. name='top_head',
  107. id=13,
  108. color=[51, 153, 255],
  109. type='upper',
  110. swap=''),
  111. },
  112. skeleton_info={
  113. 0:
  114. dict(link=('right_ankle', 'right_knee'), id=0, color=[255, 128, 0]),
  115. 1:
  116. dict(link=('right_knee', 'right_hip'), id=1, color=[255, 128, 0]),
  117. 2:
  118. dict(link=('left_hip', 'left_knee'), id=2, color=[0, 255, 0]),
  119. 3:
  120. dict(link=('left_knee', 'left_ankle'), id=3, color=[0, 255, 0]),
  121. 4:
  122. dict(link=('right_hip', 'left_hip'), id=4, color=[51, 153, 255]),
  123. 5:
  124. dict(link=('right_wrist', 'right_elbow'), id=5, color=[255, 128, 0]),
  125. 6:
  126. dict(
  127. link=('right_elbow', 'right_shoulder'), id=6, color=[255, 128, 0]),
  128. 7:
  129. dict(link=('left_shoulder', 'left_elbow'), id=7, color=[0, 255, 0]),
  130. 8:
  131. dict(link=('left_elbow', 'left_wrist'), id=8, color=[0, 255, 0]),
  132. 9:
  133. dict(link=('right_hip', 'right_shoulder'), id=9, color=[255, 128, 0]),
  134. 10:
  135. dict(link=('left_hip', 'left_shoulder'), id=10, color=[0, 255, 0]),
  136. 11:
  137. dict(
  138. link=('right_shoulder', 'bottom_head'), id=11, color=[255, 128,
  139. 0]),
  140. 12:
  141. dict(link=('left_shoulder', 'bottom_head'), id=12, color=[0, 255, 0]),
  142. 13:
  143. dict(link=('bottom_head', 'top_head'), id=13, color=[51, 153, 255]),
  144. },
  145. joint_weights=[
  146. 1.5, 1.2, 1.0, 1.0, 1.2, 1.5, 1.5, 1.2, 1.0, 1.0, 1.2, 1.5, 1.0, 1.0
  147. ],
  148. sigmas=[
  149. 0.089, 0.087, 0.107, 0.107, 0.087, 0.089, 0.062, 0.072, 0.079, 0.079,
  150. 0.072, 0.062, 0.026, 0.026
  151. ])