mpi_inf_3dhp.py 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132
  1. dataset_info = dict(
  2. dataset_name='mpi_inf_3dhp',
  3. paper_info=dict(
  4. author='ehta, Dushyant and Rhodin, Helge and Casas, Dan and '
  5. 'Fua, Pascal and Sotnychenko, Oleksandr and Xu, Weipeng and '
  6. 'Theobalt, Christian',
  7. title='Monocular 3D Human Pose Estimation In The Wild Using Improved '
  8. 'CNN Supervision',
  9. container='2017 international conference on 3D vision (3DV)',
  10. year='2017',
  11. homepage='http://gvv.mpi-inf.mpg.de/3dhp-dataset',
  12. ),
  13. keypoint_info={
  14. 0:
  15. dict(
  16. name='head_top', id=0, color=[51, 153, 255], type='upper',
  17. swap=''),
  18. 1:
  19. dict(name='neck', id=1, color=[51, 153, 255], type='upper', swap=''),
  20. 2:
  21. dict(
  22. name='right_shoulder',
  23. id=2,
  24. color=[255, 128, 0],
  25. type='upper',
  26. swap='left_shoulder'),
  27. 3:
  28. dict(
  29. name='right_elbow',
  30. id=3,
  31. color=[255, 128, 0],
  32. type='upper',
  33. swap='left_elbow'),
  34. 4:
  35. dict(
  36. name='right_wrist',
  37. id=4,
  38. color=[255, 128, 0],
  39. type='upper',
  40. swap='left_wrist'),
  41. 5:
  42. dict(
  43. name='left_shoulder',
  44. id=5,
  45. color=[0, 255, 0],
  46. type='upper',
  47. swap='right_shoulder'),
  48. 6:
  49. dict(
  50. name='left_elbow',
  51. id=6,
  52. color=[0, 255, 0],
  53. type='upper',
  54. swap='right_elbow'),
  55. 7:
  56. dict(
  57. name='left_wrist',
  58. id=7,
  59. color=[0, 255, 0],
  60. type='upper',
  61. swap='right_wrist'),
  62. 8:
  63. dict(
  64. name='right_hip',
  65. id=8,
  66. color=[255, 128, 0],
  67. type='lower',
  68. swap='left_hip'),
  69. 9:
  70. dict(
  71. name='right_knee',
  72. id=9,
  73. color=[255, 128, 0],
  74. type='lower',
  75. swap='left_knee'),
  76. 10:
  77. dict(
  78. name='right_ankle',
  79. id=10,
  80. color=[255, 128, 0],
  81. type='lower',
  82. swap='left_ankle'),
  83. 11:
  84. dict(
  85. name='left_hip',
  86. id=11,
  87. color=[0, 255, 0],
  88. type='lower',
  89. swap='right_hip'),
  90. 12:
  91. dict(
  92. name='left_knee',
  93. id=12,
  94. color=[0, 255, 0],
  95. type='lower',
  96. swap='right_knee'),
  97. 13:
  98. dict(
  99. name='left_ankle',
  100. id=13,
  101. color=[0, 255, 0],
  102. type='lower',
  103. swap='right_ankle'),
  104. 14:
  105. dict(name='root', id=14, color=[51, 153, 255], type='lower', swap=''),
  106. 15:
  107. dict(name='spine', id=15, color=[51, 153, 255], type='upper', swap=''),
  108. 16:
  109. dict(name='head', id=16, color=[51, 153, 255], type='upper', swap='')
  110. },
  111. skeleton_info={
  112. 0: dict(link=('neck', 'right_shoulder'), id=0, color=[255, 128, 0]),
  113. 1: dict(
  114. link=('right_shoulder', 'right_elbow'), id=1, color=[255, 128, 0]),
  115. 2:
  116. dict(link=('right_elbow', 'right_wrist'), id=2, color=[255, 128, 0]),
  117. 3: dict(link=('neck', 'left_shoulder'), id=3, color=[0, 255, 0]),
  118. 4: dict(link=('left_shoulder', 'left_elbow'), id=4, color=[0, 255, 0]),
  119. 5: dict(link=('left_elbow', 'left_wrist'), id=5, color=[0, 255, 0]),
  120. 6: dict(link=('root', 'right_hip'), id=6, color=[255, 128, 0]),
  121. 7: dict(link=('right_hip', 'right_knee'), id=7, color=[255, 128, 0]),
  122. 8: dict(link=('right_knee', 'right_ankle'), id=8, color=[255, 128, 0]),
  123. 9: dict(link=('root', 'left_hip'), id=9, color=[0, 255, 0]),
  124. 10: dict(link=('left_hip', 'left_knee'), id=10, color=[0, 255, 0]),
  125. 11: dict(link=('left_knee', 'left_ankle'), id=11, color=[0, 255, 0]),
  126. 12: dict(link=('head_top', 'head'), id=12, color=[51, 153, 255]),
  127. 13: dict(link=('head', 'neck'), id=13, color=[51, 153, 255]),
  128. 14: dict(link=('neck', 'spine'), id=14, color=[51, 153, 255]),
  129. 15: dict(link=('spine', 'root'), id=15, color=[51, 153, 255])
  130. },
  131. joint_weights=[1.] * 17,
  132. sigmas=[])