ap10k.py 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142
  1. dataset_info = dict(
  2. dataset_name='ap10k',
  3. paper_info=dict(
  4. author='Yu, Hang and Xu, Yufei and Zhang, Jing and '
  5. 'Zhao, Wei and Guan, Ziyu and Tao, Dacheng',
  6. title='AP-10K: A Benchmark for Animal Pose Estimation in the Wild',
  7. container='35th Conference on Neural Information Processing Systems '
  8. '(NeurIPS 2021) Track on Datasets and Bench-marks.',
  9. year='2021',
  10. homepage='https://github.com/AlexTheBad/AP-10K',
  11. ),
  12. keypoint_info={
  13. 0:
  14. dict(
  15. name='L_Eye', id=0, color=[0, 255, 0], type='upper', swap='R_Eye'),
  16. 1:
  17. dict(
  18. name='R_Eye',
  19. id=1,
  20. color=[255, 128, 0],
  21. type='upper',
  22. swap='L_Eye'),
  23. 2:
  24. dict(name='Nose', id=2, color=[51, 153, 255], type='upper', swap=''),
  25. 3:
  26. dict(name='Neck', id=3, color=[51, 153, 255], type='upper', swap=''),
  27. 4:
  28. dict(
  29. name='Root of tail',
  30. id=4,
  31. color=[51, 153, 255],
  32. type='lower',
  33. swap=''),
  34. 5:
  35. dict(
  36. name='L_Shoulder',
  37. id=5,
  38. color=[51, 153, 255],
  39. type='upper',
  40. swap='R_Shoulder'),
  41. 6:
  42. dict(
  43. name='L_Elbow',
  44. id=6,
  45. color=[51, 153, 255],
  46. type='upper',
  47. swap='R_Elbow'),
  48. 7:
  49. dict(
  50. name='L_F_Paw',
  51. id=7,
  52. color=[0, 255, 0],
  53. type='upper',
  54. swap='R_F_Paw'),
  55. 8:
  56. dict(
  57. name='R_Shoulder',
  58. id=8,
  59. color=[0, 255, 0],
  60. type='upper',
  61. swap='L_Shoulder'),
  62. 9:
  63. dict(
  64. name='R_Elbow',
  65. id=9,
  66. color=[255, 128, 0],
  67. type='upper',
  68. swap='L_Elbow'),
  69. 10:
  70. dict(
  71. name='R_F_Paw',
  72. id=10,
  73. color=[0, 255, 0],
  74. type='lower',
  75. swap='L_F_Paw'),
  76. 11:
  77. dict(
  78. name='L_Hip',
  79. id=11,
  80. color=[255, 128, 0],
  81. type='lower',
  82. swap='R_Hip'),
  83. 12:
  84. dict(
  85. name='L_Knee',
  86. id=12,
  87. color=[255, 128, 0],
  88. type='lower',
  89. swap='R_Knee'),
  90. 13:
  91. dict(
  92. name='L_B_Paw',
  93. id=13,
  94. color=[0, 255, 0],
  95. type='lower',
  96. swap='R_B_Paw'),
  97. 14:
  98. dict(
  99. name='R_Hip', id=14, color=[0, 255, 0], type='lower',
  100. swap='L_Hip'),
  101. 15:
  102. dict(
  103. name='R_Knee',
  104. id=15,
  105. color=[0, 255, 0],
  106. type='lower',
  107. swap='L_Knee'),
  108. 16:
  109. dict(
  110. name='R_B_Paw',
  111. id=16,
  112. color=[0, 255, 0],
  113. type='lower',
  114. swap='L_B_Paw'),
  115. },
  116. skeleton_info={
  117. 0: dict(link=('L_Eye', 'R_Eye'), id=0, color=[0, 0, 255]),
  118. 1: dict(link=('L_Eye', 'Nose'), id=1, color=[0, 0, 255]),
  119. 2: dict(link=('R_Eye', 'Nose'), id=2, color=[0, 0, 255]),
  120. 3: dict(link=('Nose', 'Neck'), id=3, color=[0, 255, 0]),
  121. 4: dict(link=('Neck', 'Root of tail'), id=4, color=[0, 255, 0]),
  122. 5: dict(link=('Neck', 'L_Shoulder'), id=5, color=[0, 255, 255]),
  123. 6: dict(link=('L_Shoulder', 'L_Elbow'), id=6, color=[0, 255, 255]),
  124. 7: dict(link=('L_Elbow', 'L_F_Paw'), id=6, color=[0, 255, 255]),
  125. 8: dict(link=('Neck', 'R_Shoulder'), id=7, color=[6, 156, 250]),
  126. 9: dict(link=('R_Shoulder', 'R_Elbow'), id=8, color=[6, 156, 250]),
  127. 10: dict(link=('R_Elbow', 'R_F_Paw'), id=9, color=[6, 156, 250]),
  128. 11: dict(link=('Root of tail', 'L_Hip'), id=10, color=[0, 255, 255]),
  129. 12: dict(link=('L_Hip', 'L_Knee'), id=11, color=[0, 255, 255]),
  130. 13: dict(link=('L_Knee', 'L_B_Paw'), id=12, color=[0, 255, 255]),
  131. 14: dict(link=('Root of tail', 'R_Hip'), id=13, color=[6, 156, 250]),
  132. 15: dict(link=('R_Hip', 'R_Knee'), id=14, color=[6, 156, 250]),
  133. 16: dict(link=('R_Knee', 'R_B_Paw'), id=15, color=[6, 156, 250]),
  134. },
  135. joint_weights=[
  136. 1., 1., 1., 1., 1., 1., 1., 1.2, 1.2, 1.5, 1.5, 1., 1., 1.2, 1.2, 1.5,
  137. 1.5
  138. ],
  139. sigmas=[
  140. 0.025, 0.025, 0.026, 0.035, 0.035, 0.079, 0.072, 0.062, 0.079, 0.072,
  141. 0.062, 0.107, 0.087, 0.089, 0.107, 0.087, 0.089
  142. ])