123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import torch
- from torch.nn.modules import GroupNorm
- from torch.nn.modules.batchnorm import _BatchNorm
- from mmpose.models.backbones import ShuffleNetV1
- from mmpose.models.backbones.shufflenet_v1 import ShuffleUnit
- class TestShufflenetV1(TestCase):
- @staticmethod
- def is_block(modules):
- """Check if is ResNet building block."""
- if isinstance(modules, (ShuffleUnit, )):
- return True
- return False
- @staticmethod
- def is_norm(modules):
- """Check if is one of the norms."""
- if isinstance(modules, (GroupNorm, _BatchNorm)):
- return True
- return False
- @staticmethod
- def check_norm_state(modules, train_state):
- """Check if norm layer is in correct train state."""
- for mod in modules:
- if isinstance(mod, _BatchNorm):
- if mod.training != train_state:
- return False
- return True
- def test_shufflenetv1_shuffleuint(self):
- with self.assertRaises(ValueError):
- # combine must be in ['add', 'concat']
- ShuffleUnit(24, 16, groups=3, first_block=True, combine='test')
- with self.assertRaises(AssertionError):
- # inplanes must be equal tp = outplanes when combine='add'
- ShuffleUnit(64, 24, groups=4, first_block=True, combine='add')
- # Test ShuffleUnit with combine='add'
- block = ShuffleUnit(24, 24, groups=3, first_block=True, combine='add')
- x = torch.randn(1, 24, 56, 56)
- x_out = block(x)
- self.assertEqual(x_out.shape, torch.Size((1, 24, 56, 56)))
- # Test ShuffleUnit with combine='concat'
- block = ShuffleUnit(
- 24, 240, groups=3, first_block=True, combine='concat')
- x = torch.randn(1, 24, 56, 56)
- x_out = block(x)
- self.assertEqual(x_out.shape, torch.Size((1, 240, 28, 28)))
- # Test ShuffleUnit with checkpoint forward
- block = ShuffleUnit(
- 24, 24, groups=3, first_block=True, combine='add', with_cp=True)
- self.assertTrue(block.with_cp)
- x = torch.randn(1, 24, 56, 56)
- x.requires_grad = True
- x_out = block(x)
- self.assertEqual(x_out.shape, torch.Size((1, 24, 56, 56)))
- def test_shufflenetv1_backbone(self):
- with self.assertRaises(ValueError):
- # frozen_stages must be in range(-1, 4)
- ShuffleNetV1(frozen_stages=10)
- with self.assertRaises(ValueError):
- # the item in out_indices must be in range(0, 4)
- ShuffleNetV1(out_indices=[5])
- with self.assertRaises(ValueError):
- # groups must be in [1, 2, 3, 4, 8]
- ShuffleNetV1(groups=10)
- # Test ShuffleNetV1 norm state
- model = ShuffleNetV1()
- model.init_weights()
- model.train()
- self.assertTrue(self.check_norm_state(model.modules(), True))
- # Test ShuffleNetV1 with first stage frozen
- frozen_stages = 1
- model = ShuffleNetV1(
- frozen_stages=frozen_stages, out_indices=(0, 1, 2))
- model.init_weights()
- model.train()
- for param in model.conv1.parameters():
- self.assertFalse(param.requires_grad)
- for i in range(frozen_stages):
- layer = model.layers[i]
- for mod in layer.modules():
- if isinstance(mod, _BatchNorm):
- self.assertFalse(mod.training)
- for param in layer.parameters():
- self.assertFalse(param.requires_grad)
- # Test ShuffleNetV1 forward with groups=1
- model = ShuffleNetV1(groups=1, out_indices=(0, 1, 2))
- model.init_weights()
- model.train()
- for m in model.modules():
- if self.is_norm(m):
- self.assertIsInstance(m, _BatchNorm)
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 3)
- self.assertEqual(feat[0].shape, torch.Size((1, 144, 28, 28)))
- self.assertEqual(feat[1].shape, torch.Size((1, 288, 14, 14)))
- self.assertEqual(feat[2].shape, torch.Size((1, 576, 7, 7)))
- # Test ShuffleNetV1 forward with groups=2
- model = ShuffleNetV1(groups=2, out_indices=(0, 1, 2))
- model.init_weights()
- model.train()
- for m in model.modules():
- if self.is_norm(m):
- self.assertIsInstance(m, _BatchNorm)
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 3)
- self.assertEqual(feat[0].shape, torch.Size((1, 200, 28, 28)))
- self.assertEqual(feat[1].shape, torch.Size((1, 400, 14, 14)))
- self.assertEqual(feat[2].shape, torch.Size((1, 800, 7, 7)))
- # Test ShuffleNetV1 forward with groups=3
- model = ShuffleNetV1(groups=3, out_indices=(0, 1, 2))
- model.init_weights()
- model.train()
- for m in model.modules():
- if self.is_norm(m):
- self.assertIsInstance(m, _BatchNorm)
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 3)
- self.assertEqual(feat[0].shape, torch.Size((1, 240, 28, 28)))
- self.assertEqual(feat[1].shape, torch.Size((1, 480, 14, 14)))
- self.assertEqual(feat[2].shape, torch.Size((1, 960, 7, 7)))
- # Test ShuffleNetV1 forward with groups=4
- model = ShuffleNetV1(groups=4, out_indices=(0, 1, 2))
- model.init_weights()
- model.train()
- for m in model.modules():
- if self.is_norm(m):
- self.assertIsInstance(m, _BatchNorm)
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 3)
- self.assertEqual(feat[0].shape, torch.Size((1, 272, 28, 28)))
- self.assertEqual(feat[1].shape, torch.Size((1, 544, 14, 14)))
- self.assertEqual(feat[2].shape, torch.Size((1, 1088, 7, 7)))
- # Test ShuffleNetV1 forward with groups=8
- model = ShuffleNetV1(groups=8, out_indices=(0, 1, 2))
- model.init_weights()
- model.train()
- for m in model.modules():
- if self.is_norm(m):
- self.assertIsInstance(m, _BatchNorm)
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 3)
- self.assertEqual(feat[0].shape, torch.Size((1, 384, 28, 28)))
- self.assertEqual(feat[1].shape, torch.Size((1, 768, 14, 14)))
- self.assertEqual(feat[2].shape, torch.Size((1, 1536, 7, 7)))
- # Test ShuffleNetV1 forward with GroupNorm forward
- model = ShuffleNetV1(
- groups=3,
- norm_cfg=dict(type='GN', num_groups=2, requires_grad=True),
- out_indices=(0, 1, 2))
- model.init_weights()
- model.train()
- for m in model.modules():
- if self.is_norm(m):
- self.assertIsInstance(m, GroupNorm)
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 3)
- self.assertEqual(feat[0].shape, torch.Size((1, 240, 28, 28)))
- self.assertEqual(feat[1].shape, torch.Size((1, 480, 14, 14)))
- self.assertEqual(feat[2].shape, torch.Size((1, 960, 7, 7)))
- # Test ShuffleNetV1 forward with layers 1, 2 forward
- model = ShuffleNetV1(groups=3, out_indices=(1, 2))
- model.init_weights()
- model.train()
- for m in model.modules():
- if self.is_norm(m):
- self.assertIsInstance(m, _BatchNorm)
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 2)
- self.assertEqual(feat[0].shape, torch.Size((1, 480, 14, 14)))
- self.assertEqual(feat[1].shape, torch.Size((1, 960, 7, 7)))
- # Test ShuffleNetV1 forward with layers 2 forward
- model = ShuffleNetV1(groups=3, out_indices=(2, ))
- model.init_weights()
- model.train()
- for m in model.modules():
- if self.is_norm(m):
- self.assertIsInstance(m, _BatchNorm)
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertIsInstance(feat, tuple)
- self.assertEqual(feat[-1].shape, torch.Size((1, 960, 7, 7)))
- # Test ShuffleNetV1 forward with checkpoint forward
- model = ShuffleNetV1(groups=3, with_cp=True)
- for m in model.modules():
- if self.is_block(m):
- self.assertTrue(m.with_cp)
- # Test ShuffleNetV1 with norm_eval
- model = ShuffleNetV1(norm_eval=True)
- model.init_weights()
- model.train()
- self.assertTrue(self.check_norm_state(model.modules(), False))
|