123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import torch
- from torch.nn.modules import AvgPool2d
- from torch.nn.modules.batchnorm import _BatchNorm
- from mmpose.models.backbones import SEResNet
- from mmpose.models.backbones.resnet import ResLayer
- from mmpose.models.backbones.seresnet import SEBottleneck, SELayer
- class TestSEResnet(TestCase):
- @staticmethod
- def all_zeros(modules):
- """Check if the weight(and bias) is all zero."""
- weight_zero = torch.equal(modules.weight.data,
- torch.zeros_like(modules.weight.data))
- if hasattr(modules, 'bias'):
- bias_zero = torch.equal(modules.bias.data,
- torch.zeros_like(modules.bias.data))
- else:
- bias_zero = True
- return weight_zero and bias_zero
- @staticmethod
- def check_norm_state(modules, train_state):
- """Check if norm layer is in correct train state."""
- for mod in modules:
- if isinstance(mod, _BatchNorm):
- if mod.training != train_state:
- return False
- return True
- def test_selayer(self):
- # Test selayer forward
- layer = SELayer(64)
- x = torch.randn(1, 64, 56, 56)
- x_out = layer(x)
- self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56]))
- # Test selayer forward with different ratio
- layer = SELayer(64, ratio=8)
- x = torch.randn(1, 64, 56, 56)
- x_out = layer(x)
- self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56]))
- def test_bottleneck(self):
- with self.assertRaises(AssertionError):
- # Style must be in ['pytorch', 'caffe']
- SEBottleneck(64, 64, style='tensorflow')
- # Test SEBottleneck with checkpoint forward
- block = SEBottleneck(64, 64, with_cp=True)
- self.assertTrue(block.with_cp)
- x = torch.randn(1, 64, 56, 56)
- x_out = block(x)
- self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56]))
- # Test Bottleneck style
- block = SEBottleneck(64, 256, stride=2, style='pytorch')
- self.assertEqual(block.conv1.stride, (1, 1))
- self.assertEqual(block.conv2.stride, (2, 2))
- block = SEBottleneck(64, 256, stride=2, style='caffe')
- self.assertEqual(block.conv1.stride, (2, 2))
- self.assertEqual(block.conv2.stride, (1, 1))
- # Test Bottleneck forward
- block = SEBottleneck(64, 64)
- x = torch.randn(1, 64, 56, 56)
- x_out = block(x)
- self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56]))
- def test_res_layer(self):
- # Test ResLayer of 3 Bottleneck w\o downsample
- layer = ResLayer(SEBottleneck, 3, 64, 64, se_ratio=16)
- self.assertEqual(len(layer), 3)
- self.assertEqual(layer[0].conv1.in_channels, 64)
- self.assertEqual(layer[0].conv1.out_channels, 16)
- for i in range(1, len(layer)):
- self.assertEqual(layer[i].conv1.in_channels, 64)
- self.assertEqual(layer[i].conv1.out_channels, 16)
- for i in range(len(layer)):
- self.assertIsNone(layer[i].downsample)
- x = torch.randn(1, 64, 56, 56)
- x_out = layer(x)
- self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56]))
- # Test ResLayer of 3 SEBottleneck with downsample
- layer = ResLayer(SEBottleneck, 3, 64, 256, se_ratio=16)
- self.assertEqual(layer[0].downsample[0].out_channels, 256)
- for i in range(1, len(layer)):
- self.assertIsNone(layer[i].downsample)
- x = torch.randn(1, 64, 56, 56)
- x_out = layer(x)
- self.assertEqual(x_out.shape, torch.Size([1, 256, 56, 56]))
- # Test ResLayer of 3 SEBottleneck with stride=2
- layer = ResLayer(SEBottleneck, 3, 64, 256, stride=2, se_ratio=8)
- self.assertEqual(layer[0].downsample[0].out_channels, 256)
- self.assertEqual(layer[0].downsample[0].stride, (2, 2))
- for i in range(1, len(layer)):
- self.assertIsNone(layer[i].downsample)
- x = torch.randn(1, 64, 56, 56)
- x_out = layer(x)
- self.assertEqual(x_out.shape, torch.Size([1, 256, 28, 28]))
- # Test ResLayer of 3 SEBottleneck with stride=2 and average downsample
- layer = ResLayer(
- SEBottleneck, 3, 64, 256, stride=2, avg_down=True, se_ratio=8)
- self.assertIsInstance(layer[0].downsample[0], AvgPool2d)
- self.assertEqual(layer[0].downsample[1].out_channels, 256)
- self.assertEqual(layer[0].downsample[1].stride, (1, 1))
- for i in range(1, len(layer)):
- self.assertIsNone(layer[i].downsample)
- x = torch.randn(1, 64, 56, 56)
- x_out = layer(x)
- self.assertEqual(x_out.shape, torch.Size([1, 256, 28, 28]))
- def test_seresnet(self):
- """Test resnet backbone."""
- with self.assertRaises(KeyError):
- # SEResNet depth should be in [50, 101, 152]
- SEResNet(20)
- with self.assertRaises(AssertionError):
- # In SEResNet: 1 <= num_stages <= 4
- SEResNet(50, num_stages=0)
- with self.assertRaises(AssertionError):
- # In SEResNet: 1 <= num_stages <= 4
- SEResNet(50, num_stages=5)
- with self.assertRaises(AssertionError):
- # len(strides) == len(dilations) == num_stages
- SEResNet(50, strides=(1, ), dilations=(1, 1), num_stages=3)
- with self.assertRaises(AssertionError):
- # Style must be in ['pytorch', 'caffe']
- SEResNet(50, style='tensorflow')
- # Test SEResNet50 norm_eval=True
- model = SEResNet(50, norm_eval=True)
- model.init_weights()
- model.train()
- self.assertTrue(self.check_norm_state(model.modules(), False))
- # Test SEResNet50 with torchvision pretrained weight
- init_cfg = dict(type='Pretrained', checkpoint='torchvision://resnet50')
- model = SEResNet(depth=50, norm_eval=True, init_cfg=init_cfg)
- model.train()
- self.assertTrue(self.check_norm_state(model.modules(), False))
- # Test SEResNet50 with first stage frozen
- frozen_stages = 1
- model = SEResNet(50, frozen_stages=frozen_stages)
- model.init_weights()
- model.train()
- self.assertFalse(model.norm1.training)
- for layer in [model.conv1, model.norm1]:
- for param in layer.parameters():
- self.assertFalse(param.requires_grad)
- for i in range(1, frozen_stages + 1):
- layer = getattr(model, f'layer{i}')
- for mod in layer.modules():
- if isinstance(mod, _BatchNorm):
- self.assertFalse(mod.training)
- for param in layer.parameters():
- self.assertFalse(param.requires_grad)
- # Test SEResNet50 with BatchNorm forward
- model = SEResNet(50, out_indices=(0, 1, 2, 3))
- model.init_weights()
- model.train()
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 4)
- self.assertEqual(feat[0].shape, torch.Size([1, 256, 56, 56]))
- self.assertEqual(feat[1].shape, torch.Size([1, 512, 28, 28]))
- self.assertEqual(feat[2].shape, torch.Size([1, 1024, 14, 14]))
- self.assertEqual(feat[3].shape, torch.Size([1, 2048, 7, 7]))
- # Test SEResNet50 with layers 1, 2, 3 out forward
- model = SEResNet(50, out_indices=(0, 1, 2))
- model.init_weights()
- model.train()
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 3)
- self.assertEqual(feat[0].shape, torch.Size([1, 256, 56, 56]))
- self.assertEqual(feat[1].shape, torch.Size([1, 512, 28, 28]))
- self.assertEqual(feat[2].shape, torch.Size([1, 1024, 14, 14]))
- # Test SEResNet50 with layers 3 (top feature maps) out forward
- model = SEResNet(50, out_indices=(3, ))
- model.init_weights()
- model.train()
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertIsInstance(feat, tuple)
- self.assertEqual(feat[-1].shape, torch.Size([1, 2048, 7, 7]))
- # Test SEResNet50 with checkpoint forward
- model = SEResNet(50, out_indices=(0, 1, 2, 3), with_cp=True)
- for m in model.modules():
- if isinstance(m, SEBottleneck):
- self.assertTrue(m.with_cp)
- model.init_weights()
- model.train()
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 4)
- self.assertEqual(feat[0].shape, torch.Size([1, 256, 56, 56]))
- self.assertEqual(feat[1].shape, torch.Size([1, 512, 28, 28]))
- self.assertEqual(feat[2].shape, torch.Size([1, 1024, 14, 14]))
- self.assertEqual(feat[3].shape, torch.Size([1, 2048, 7, 7]))
- # Test SEResNet50 zero initialization of residual
- model = SEResNet(50, out_indices=(0, 1, 2, 3), zero_init_residual=True)
- model.init_weights()
- for m in model.modules():
- if isinstance(m, SEBottleneck):
- self.assertTrue(self.all_zeros(m.norm3))
- model.train()
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 4)
- self.assertEqual(feat[0].shape, torch.Size([1, 256, 56, 56]))
- self.assertEqual(feat[1].shape, torch.Size([1, 512, 28, 28]))
- self.assertEqual(feat[2].shape, torch.Size([1, 1024, 14, 14]))
- self.assertEqual(feat[3].shape, torch.Size([1, 2048, 7, 7]))
|