123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import torch
- from torch.nn.modules import GroupNorm
- from torch.nn.modules.batchnorm import _BatchNorm
- from mmpose.models.backbones import MobileNetV2
- from mmpose.models.backbones.mobilenet_v2 import InvertedResidual
- class TestMobilenetV2(TestCase):
- @staticmethod
- def is_block(modules):
- """Check if is ResNet building block."""
- if isinstance(modules, (InvertedResidual, )):
- return True
- return False
- @staticmethod
- def is_norm(modules):
- """Check if is one of the norms."""
- if isinstance(modules, (GroupNorm, _BatchNorm)):
- return True
- return False
- @staticmethod
- def check_norm_state(modules, train_state):
- """Check if norm layer is in correct train state."""
- for mod in modules:
- if isinstance(mod, _BatchNorm):
- if mod.training != train_state:
- return False
- return True
- def test_mobilenetv2_invertedresidual(self):
- with self.assertRaises(AssertionError):
- # stride must be in [1, 2]
- InvertedResidual(16, 24, stride=3, expand_ratio=6)
- # Test InvertedResidual with checkpoint forward, stride=1
- block = InvertedResidual(16, 24, stride=1, expand_ratio=6)
- x = torch.randn(1, 16, 56, 56)
- x_out = block(x)
- self.assertEqual(x_out.shape, torch.Size((1, 24, 56, 56)))
- # Test InvertedResidual with expand_ratio=1
- block = InvertedResidual(16, 16, stride=1, expand_ratio=1)
- self.assertEqual(len(block.conv), 2)
- # Test InvertedResidual with use_res_connect
- block = InvertedResidual(16, 16, stride=1, expand_ratio=6)
- x = torch.randn(1, 16, 56, 56)
- x_out = block(x)
- self.assertTrue(block.use_res_connect)
- self.assertEqual(x_out.shape, torch.Size((1, 16, 56, 56)))
- # Test InvertedResidual with checkpoint forward, stride=2
- block = InvertedResidual(16, 24, stride=2, expand_ratio=6)
- x = torch.randn(1, 16, 56, 56)
- x_out = block(x)
- self.assertEqual(x_out.shape, torch.Size((1, 24, 28, 28)))
- # Test InvertedResidual with checkpoint forward
- block = InvertedResidual(
- 16, 24, stride=1, expand_ratio=6, with_cp=True)
- self.assertTrue(block.with_cp)
- x = torch.randn(1, 16, 56, 56)
- x_out = block(x)
- self.assertEqual(x_out.shape, torch.Size((1, 24, 56, 56)))
- # Test InvertedResidual with act_cfg=dict(type='ReLU')
- block = InvertedResidual(
- 16, 24, stride=1, expand_ratio=6, act_cfg=dict(type='ReLU'))
- x = torch.randn(1, 16, 56, 56)
- x_out = block(x)
- self.assertEqual(x_out.shape, torch.Size((1, 24, 56, 56)))
- def test_mobilenetv2_backbone(self):
- with self.assertRaises(TypeError):
- # pretrained must be a string path
- model = MobileNetV2()
- model.init_weights(pretrained=0)
- with self.assertRaises(ValueError):
- # frozen_stages must in range(1, 8)
- MobileNetV2(frozen_stages=8)
- with self.assertRaises(ValueError):
- # tout_indices in range(-1, 8)
- MobileNetV2(out_indices=[8])
- # Test MobileNetV2 with first stage frozen
- frozen_stages = 1
- model = MobileNetV2(frozen_stages=frozen_stages)
- model.init_weights()
- model.train()
- for mod in model.conv1.modules():
- for param in mod.parameters():
- self.assertFalse(param.requires_grad)
- for i in range(1, frozen_stages + 1):
- layer = getattr(model, f'layer{i}')
- for mod in layer.modules():
- if isinstance(mod, _BatchNorm):
- self.assertFalse(mod.training)
- for param in layer.parameters():
- self.assertFalse(param.requires_grad)
- # Test MobileNetV2 with norm_eval=True
- model = MobileNetV2(norm_eval=True)
- model.init_weights()
- model.train()
- self.assertTrue(self.check_norm_state(model.modules(), False))
- # Test MobileNetV2 forward with widen_factor=1.0
- model = MobileNetV2(widen_factor=1.0, out_indices=range(0, 8))
- model.init_weights()
- model.train()
- self.assertTrue(self.check_norm_state(model.modules(), True))
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 8)
- self.assertEqual(feat[0].shape, torch.Size((1, 16, 112, 112)))
- self.assertEqual(feat[1].shape, torch.Size((1, 24, 56, 56)))
- self.assertEqual(feat[2].shape, torch.Size((1, 32, 28, 28)))
- self.assertEqual(feat[3].shape, torch.Size((1, 64, 14, 14)))
- self.assertEqual(feat[4].shape, torch.Size((1, 96, 14, 14)))
- self.assertEqual(feat[5].shape, torch.Size((1, 160, 7, 7)))
- self.assertEqual(feat[6].shape, torch.Size((1, 320, 7, 7)))
- self.assertEqual(feat[7].shape, torch.Size((1, 1280, 7, 7)))
- # Test MobileNetV2 forward with widen_factor=0.5
- model = MobileNetV2(widen_factor=0.5, out_indices=range(0, 7))
- model.init_weights()
- model.train()
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 7)
- self.assertEqual(feat[0].shape, torch.Size((1, 8, 112, 112)))
- self.assertEqual(feat[1].shape, torch.Size((1, 16, 56, 56)))
- self.assertEqual(feat[2].shape, torch.Size((1, 16, 28, 28)))
- self.assertEqual(feat[3].shape, torch.Size((1, 32, 14, 14)))
- self.assertEqual(feat[4].shape, torch.Size((1, 48, 14, 14)))
- self.assertEqual(feat[5].shape, torch.Size((1, 80, 7, 7)))
- self.assertEqual(feat[6].shape, torch.Size((1, 160, 7, 7)))
- # Test MobileNetV2 forward with widen_factor=2.0
- model = MobileNetV2(widen_factor=2.0)
- model.init_weights()
- model.train()
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertIsInstance(feat, tuple)
- self.assertEqual(feat[-1].shape, torch.Size((1, 2560, 7, 7)))
- # Test MobileNetV2 forward with out_indices=None
- model = MobileNetV2(widen_factor=1.0)
- model.init_weights()
- model.train()
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertIsInstance(feat, tuple)
- self.assertEqual(feat[-1].shape, torch.Size((1, 1280, 7, 7)))
- # Test MobileNetV2 forward with dict(type='ReLU')
- model = MobileNetV2(
- widen_factor=1.0,
- act_cfg=dict(type='ReLU'),
- out_indices=range(0, 7))
- model.init_weights()
- model.train()
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 7)
- self.assertEqual(feat[0].shape, torch.Size((1, 16, 112, 112)))
- self.assertEqual(feat[1].shape, torch.Size((1, 24, 56, 56)))
- self.assertEqual(feat[2].shape, torch.Size((1, 32, 28, 28)))
- self.assertEqual(feat[3].shape, torch.Size((1, 64, 14, 14)))
- self.assertEqual(feat[4].shape, torch.Size((1, 96, 14, 14)))
- self.assertEqual(feat[5].shape, torch.Size((1, 160, 7, 7)))
- self.assertEqual(feat[6].shape, torch.Size((1, 320, 7, 7)))
- # Test MobileNetV2 with GroupNorm forward
- model = MobileNetV2(widen_factor=1.0, out_indices=range(0, 7))
- for m in model.modules():
- if self.is_norm(m):
- self.assertIsInstance(m, _BatchNorm)
- model.init_weights()
- model.train()
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 7)
- self.assertEqual(feat[0].shape, torch.Size((1, 16, 112, 112)))
- self.assertEqual(feat[1].shape, torch.Size((1, 24, 56, 56)))
- self.assertEqual(feat[2].shape, torch.Size((1, 32, 28, 28)))
- self.assertEqual(feat[3].shape, torch.Size((1, 64, 14, 14)))
- self.assertEqual(feat[4].shape, torch.Size((1, 96, 14, 14)))
- self.assertEqual(feat[5].shape, torch.Size((1, 160, 7, 7)))
- self.assertEqual(feat[6].shape, torch.Size((1, 320, 7, 7)))
- # Test MobileNetV2 with BatchNorm forward
- model = MobileNetV2(
- widen_factor=1.0,
- norm_cfg=dict(type='GN', num_groups=2, requires_grad=True),
- out_indices=range(0, 7))
- for m in model.modules():
- if self.is_norm(m):
- self.assertIsInstance(m, GroupNorm)
- model.init_weights()
- model.train()
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 7)
- self.assertEqual(feat[0].shape, torch.Size((1, 16, 112, 112)))
- self.assertEqual(feat[1].shape, torch.Size((1, 24, 56, 56)))
- self.assertEqual(feat[2].shape, torch.Size((1, 32, 28, 28)))
- self.assertEqual(feat[3].shape, torch.Size((1, 64, 14, 14)))
- self.assertEqual(feat[4].shape, torch.Size((1, 96, 14, 14)))
- self.assertEqual(feat[5].shape, torch.Size((1, 160, 7, 7)))
- self.assertEqual(feat[6].shape, torch.Size((1, 320, 7, 7)))
- # Test MobileNetV2 with layers 1, 3, 5 out forward
- model = MobileNetV2(widen_factor=1.0, out_indices=(0, 2, 4))
- model.init_weights()
- model.train()
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 3)
- self.assertEqual(feat[0].shape, torch.Size((1, 16, 112, 112)))
- self.assertEqual(feat[1].shape, torch.Size((1, 32, 28, 28)))
- self.assertEqual(feat[2].shape, torch.Size((1, 96, 14, 14)))
- # Test MobileNetV2 with checkpoint forward
- model = MobileNetV2(
- widen_factor=1.0, with_cp=True, out_indices=range(0, 7))
- for m in model.modules():
- if self.is_block(m):
- self.assertTrue(m.with_cp)
- model.init_weights()
- model.train()
- imgs = torch.randn(1, 3, 224, 224)
- feat = model(imgs)
- self.assertEqual(len(feat), 7)
- self.assertEqual(feat[0].shape, torch.Size((1, 16, 112, 112)))
- self.assertEqual(feat[1].shape, torch.Size((1, 24, 56, 56)))
- self.assertEqual(feat[2].shape, torch.Size((1, 32, 28, 28)))
- self.assertEqual(feat[3].shape, torch.Size((1, 64, 14, 14)))
- self.assertEqual(feat[4].shape, torch.Size((1, 96, 14, 14)))
- self.assertEqual(feat[5].shape, torch.Size((1, 160, 7, 7)))
- self.assertEqual(feat[6].shape, torch.Size((1, 320, 7, 7)))
|