123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 |
- train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300, val_interval=10)
- val_cfg = dict(type='ValLoop')
- test_cfg = dict(type='TestLoop')
- param_scheduler = [
- dict(
- type='mmdet.QuadraticWarmupLR',
- by_epoch=True,
- begin=0,
- end=5,
- convert_to_iter_based=True),
- dict(
- type='CosineAnnealingLR',
- eta_min=0.0005,
- begin=5,
- T_max=285,
- end=285,
- by_epoch=True,
- convert_to_iter_based=True),
- dict(type='ConstantLR', by_epoch=True, factor=1, begin=285, end=300)
- ]
- optim_wrapper = dict(
- type='OptimWrapper',
- optimizer=dict(
- type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005, nesterov=True),
- paramwise_cfg=dict(norm_decay_mult=0.0, bias_decay_mult=0.0))
- auto_scale_lr = dict(enable=False, base_batch_size=64)
- default_scope = 'mmdet'
- default_hooks = dict(
- timer=dict(type='IterTimerHook'),
- logger=dict(type='LoggerHook', interval=50),
- param_scheduler=dict(type='ParamSchedulerHook'),
- checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3),
- sampler_seed=dict(type='DistSamplerSeedHook'),
- visualization=dict(type='DetVisualizationHook'))
- env_cfg = dict(
- cudnn_benchmark=False,
- mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
- dist_cfg=dict(backend='nccl'))
- vis_backends = [dict(type='LocalVisBackend')]
- visualizer = dict(
- type='DetLocalVisualizer',
- vis_backends=[dict(type='LocalVisBackend')],
- name='visualizer')
- log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
- log_level = 'INFO'
- load_from = 'https://download.openmmlab.com/mmdetection/' \
- 'v2.0/yolox/yolox_s_8x8_300e_coco/' \
- 'yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth'
- resume = False
- img_scale = (640, 640)
- model = dict(
- type='YOLOX',
- data_preprocessor=dict(
- type='DetDataPreprocessor',
- pad_size_divisor=32,
- batch_augments=[
- dict(
- type='BatchSyncRandomResize',
- random_size_range=(480, 800),
- size_divisor=32,
- interval=10)
- ]),
- backbone=dict(
- type='CSPDarknet',
- deepen_factor=0.33,
- widen_factor=0.5,
- out_indices=(2, 3, 4),
- use_depthwise=False,
- spp_kernal_sizes=(5, 9, 13),
- norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
- act_cfg=dict(type='Swish')),
- neck=dict(
- type='YOLOXPAFPN',
- in_channels=[128, 256, 512],
- out_channels=128,
- num_csp_blocks=1,
- use_depthwise=False,
- upsample_cfg=dict(scale_factor=2, mode='nearest'),
- norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
- act_cfg=dict(type='Swish')),
- bbox_head=dict(
- type='YOLOXHead',
- num_classes=1,
- in_channels=128,
- feat_channels=128,
- stacked_convs=2,
- strides=(8, 16, 32),
- use_depthwise=False,
- norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
- act_cfg=dict(type='Swish'),
- loss_cls=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- reduction='sum',
- loss_weight=1.0),
- loss_bbox=dict(
- type='IoULoss',
- mode='square',
- eps=1e-16,
- reduction='sum',
- loss_weight=5.0),
- loss_obj=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- reduction='sum',
- loss_weight=1.0),
- loss_l1=dict(type='L1Loss', reduction='sum', loss_weight=1.0)),
- train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)),
- test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65)))
- data_root = 'data/coco/'
- dataset_type = 'CocoDataset'
- backend_args = dict(backend='local')
- train_pipeline = [
- dict(type='Mosaic', img_scale=(640, 640), pad_val=114.0),
- dict(
- type='RandomAffine', scaling_ratio_range=(0.1, 2),
- border=(-320, -320)),
- dict(
- type='MixUp',
- img_scale=(640, 640),
- ratio_range=(0.8, 1.6),
- pad_val=114.0),
- dict(type='YOLOXHSVRandomAug'),
- dict(type='RandomFlip', prob=0.5),
- dict(type='Resize', scale=(640, 640), keep_ratio=True),
- dict(
- type='Pad',
- pad_to_square=True,
- pad_val=dict(img=(114.0, 114.0, 114.0))),
- dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
- dict(type='PackDetInputs')
- ]
- train_dataset = dict(
- type='MultiImageMixDataset',
- dataset=dict(
- type='CocoDataset',
- data_root='data/coco/',
- ann_file='annotations/instances_train2017.json',
- data_prefix=dict(img='train2017/'),
- pipeline=[
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
- dict(type='LoadAnnotations', with_bbox=True)
- ],
- filter_cfg=dict(filter_empty_gt=False, min_size=32)),
- pipeline=[
- dict(type='Mosaic', img_scale=(640, 640), pad_val=114.0),
- dict(
- type='RandomAffine',
- scaling_ratio_range=(0.1, 2),
- border=(-320, -320)),
- dict(
- type='MixUp',
- img_scale=(640, 640),
- ratio_range=(0.8, 1.6),
- pad_val=114.0),
- dict(type='YOLOXHSVRandomAug'),
- dict(type='RandomFlip', prob=0.5),
- dict(type='Resize', scale=(640, 640), keep_ratio=True),
- dict(
- type='Pad',
- pad_to_square=True,
- pad_val=dict(img=(114.0, 114.0, 114.0))),
- dict(
- type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
- dict(type='PackDetInputs')
- ])
- test_pipeline = [
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
- dict(type='Resize', scale=(640, 640), keep_ratio=True),
- dict(
- type='Pad',
- pad_to_square=True,
- pad_val=dict(img=(114.0, 114.0, 114.0))),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor'))
- ]
- train_dataloader = dict(
- batch_size=8,
- num_workers=4,
- persistent_workers=True,
- sampler=dict(type='DefaultSampler', shuffle=True),
- dataset=dict(
- type='MultiImageMixDataset',
- dataset=dict(
- type='CocoDataset',
- data_root='data/coco/',
- ann_file='annotations/coco_face_train.json',
- data_prefix=dict(img='train2017/'),
- pipeline=[
- dict(
- type='LoadImageFromFile',
- backend_args=dict(backend='local')),
- dict(type='LoadAnnotations', with_bbox=True)
- ],
- filter_cfg=dict(filter_empty_gt=False, min_size=32),
- metainfo=dict(CLASSES=('person', ), PALETTE=(220, 20, 60))),
- pipeline=[
- dict(type='Mosaic', img_scale=(640, 640), pad_val=114.0),
- dict(
- type='RandomAffine',
- scaling_ratio_range=(0.1, 2),
- border=(-320, -320)),
- dict(
- type='MixUp',
- img_scale=(640, 640),
- ratio_range=(0.8, 1.6),
- pad_val=114.0),
- dict(type='YOLOXHSVRandomAug'),
- dict(type='RandomFlip', prob=0.5),
- dict(type='Resize', scale=(640, 640), keep_ratio=True),
- dict(
- type='Pad',
- pad_to_square=True,
- pad_val=dict(img=(114.0, 114.0, 114.0))),
- dict(
- type='FilterAnnotations',
- min_gt_bbox_wh=(1, 1),
- keep_empty=False),
- dict(type='PackDetInputs')
- ]))
- val_dataloader = dict(
- batch_size=8,
- num_workers=4,
- persistent_workers=True,
- drop_last=False,
- sampler=dict(type='DefaultSampler', shuffle=False),
- dataset=dict(
- type='CocoDataset',
- data_root='data/coco/',
- ann_file='annotations/coco_face_val.json',
- data_prefix=dict(img='val2017/'),
- test_mode=True,
- pipeline=[
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
- dict(type='Resize', scale=(640, 640), keep_ratio=True),
- dict(
- type='Pad',
- pad_to_square=True,
- pad_val=dict(img=(114.0, 114.0, 114.0))),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor'))
- ],
- metainfo=dict(CLASSES=('person', ), PALETTE=(220, 20, 60))))
- test_dataloader = dict(
- batch_size=8,
- num_workers=4,
- persistent_workers=True,
- drop_last=False,
- sampler=dict(type='DefaultSampler', shuffle=False),
- dataset=dict(
- type='CocoDataset',
- data_root='data/coco/',
- ann_file='annotations/coco_face_val.json',
- data_prefix=dict(img='val2017/'),
- test_mode=True,
- pipeline=[
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
- dict(type='Resize', scale=(640, 640), keep_ratio=True),
- dict(
- type='Pad',
- pad_to_square=True,
- pad_val=dict(img=(114.0, 114.0, 114.0))),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor'))
- ],
- metainfo=dict(CLASSES=('person', ), PALETTE=(220, 20, 60))))
- val_evaluator = dict(
- type='CocoMetric',
- ann_file='data/coco/annotations/coco_face_val.json',
- metric='bbox')
- test_evaluator = dict(
- type='CocoMetric',
- ann_file='data/coco/annotations/instances_val2017.json',
- metric='bbox')
- max_epochs = 300
- num_last_epochs = 15
- interval = 10
- base_lr = 0.01
- custom_hooks = [
- dict(type='YOLOXModeSwitchHook', num_last_epochs=15, priority=48),
- dict(type='SyncNormHook', priority=48),
- dict(
- type='EMAHook',
- ema_type='ExpMomentumEMA',
- momentum=0.0001,
- strict_load=False,
- update_buffers=True,
- priority=49)
- ]
- metainfo = dict(CLASSES=('person', ), PALETTE=(220, 20, 60))
- launcher = 'pytorch'
|