DJW cdece0b32a 第一次提交 10 mesiacov pred
..
coco-wholebody cdece0b32a 第一次提交 10 mesiacov pred
README.md cdece0b32a 第一次提交 10 mesiacov pred

README.md

Top-down heatmap-based pose estimation

Top-down methods divide the task into two stages: object detection, followed by single-object pose estimation given object bounding boxes. Instead of estimating keypoint coordinates directly, the pose estimator will produce heatmaps which represent the likelihood of being a keypoint, following the paradigm introduced in Simple Baselines for Human Pose Estimation and Tracking.

Results and Models

COCO-WholeBody Dataset

Results on COCO-WholeBody v1.0 val with detector having human AP of 56.4 on COCO val2017 dataset

Model Input Size Whole AP Whole AR Details and Download
HRNet-w48+Dark+ 384x288 0.661 0.743 hrnet_dark_coco-wholebody.md
HRNet-w32+Dark 256x192 0.582 0.671 hrnet_dark_coco-wholebody.md
HRNet-w48 256x192 0.579 0.681 hrnet_coco-wholebody.md
CSPNeXt-m 256x192 0.567 0.641 cspnext_udp_coco-wholebody.md
ResNet-152 256x192 0.548 0.661 resnet_coco-wholebody.md
HRNet-w32 256x192 0.536 0.636 hrnet_coco-wholebody.md
ResNet-101 256x192 0.531 0.645 resnet_coco-wholebody.md
S-ViPNAS-Res50+Dark 256x192 0.528 0.632 vipnas_dark_coco-wholebody.md
ResNet-50 256x192 0.521 0.633 resnet_coco-wholebody.md
S-ViPNAS-Res50 256x192 0.495 0.607 vipnas_coco-wholebody.md