DJW cdece0b32a 第一次提交 9 ヶ月 前
..
aic cdece0b32a 第一次提交 9 ヶ月 前
coco cdece0b32a 第一次提交 9 ヶ月 前
crowdpose cdece0b32a 第一次提交 9 ヶ月 前
jhmdb cdece0b32a 第一次提交 9 ヶ月 前
mpii cdece0b32a 第一次提交 9 ヶ月 前
posetrack18 cdece0b32a 第一次提交 9 ヶ月 前
README.md cdece0b32a 第一次提交 9 ヶ月 前

README.md

Top-down heatmap-based pose estimation

Top-down methods divide the task into two stages: object detection, followed by single-object pose estimation given object bounding boxes. Instead of estimating keypoint coordinates directly, the pose estimator will produce heatmaps which represent the likelihood of being a keypoint, following the paradigm introduced in Simple Baselines for Human Pose Estimation and Tracking.

Results and Models

COCO Dataset

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Model Input Size AP AR Details and Download
ViTPose-h 256x192 0.790 0.840 vitpose_coco.md
HRNet-w48+UDP 256x192 0.768 0.817 hrnet_udp_coco.md
MSPN 4-stg 256x192 0.765 0.826 mspn_coco.md
HRNet-w48+Dark 256x192 0.764 0.814 hrnet_dark_coco.md
HRNet-w48 256x192 0.756 0.809 hrnet_coco.md
HRFormer-B 256x192 0.754 0.807 hrformer_coco.md
RSN-50-3x 256x192 0.750 0.814 rsn_coco.md
CSPNeXt-l 256x192 0.750 0.800 cspnext_udp_coco.md
HRNet-w32 256x192 0.749 0.804 hrnet_coco.md
Swin-L 256x192 0.743 0.798 swin_coco.md
ViTPose-s 256x192 0.739 0.792 vitpose_coco.md
HRFormer-S 256x192 0.738 0.793 hrformer_coco.md
Swin-B 256x192 0.737 0.794 swin_coco.md
SEResNet-101 256x192 0.734 0.790 seresnet_coco.md
SCNet-101 256x192 0.733 0.789 scnet_coco.md
ResNet-101+Dark 256x192 0.733 0.786 resnet_dark_coco.md
CSPNeXt-m 256x192 0.732 0.785 cspnext_udp_coco.md
ResNetV1d-101 256x192 0.732 0.785 resnetv1d_coco.md
SEResNet-50 256x192 0.729 0.784 seresnet_coco.md
SCNet-50 256x192 0.728 0.784 scnet_coco.md
ResNet-101 256x192 0.726 0.783 resnet_coco.md
ResNeXt-101 256x192 0.726 0.781 resnext_coco.md
HourglassNet 256x256 0.726 0.780 hourglass_coco.md
ResNeSt-101 256x192 0.725 0.781 resnest_coco.md
RSN-50 256x192 0.724 0.790 rsn_coco.md
Swin-T 256x192 0.724 0.782 swin_coco.md
MSPN 1-stg 256x192 0.723 0.788 mspn_coco.md
ResNetV1d-50 256x192 0.722 0.777 resnetv1d_coco.md
ResNeSt-50 256x192 0.720 0.775 resnest_coco.md
ResNet-50 256x192 0.718 0.774 resnet_coco.md
ResNeXt-50 256x192 0.715 0.771 resnext_coco.md
PVT-S 256x192 0.714 0.773 pvt_coco.md
CSPNeXt-s 256x192 0.697 0.753 cspnext_udp_coco.md
LiteHRNet-30 256x192 0.676 0.736 litehrnet_coco.md
CSPNeXt-tiny 256x192 0.665 0.723 cspnext_udp_coco.md
MobileNet-v2 256x192 0.648 0.709 mobilenetv2_coco.md
LiteHRNet-18 256x192 0.642 0.705 litehrnet_coco.md
CPM 256x192 0.627 0.689 cpm_coco.md
ShuffleNet-v2 256x192 0.602 0.668 shufflenetv2_coco.md
ShuffleNet-v1 256x192 0.587 0.654 shufflenetv1_coco.md
AlexNet 256x192 0.448 0.521 alexnet_coco.md

MPII Dataset

Model Input Size PCKh@0.5 PCKh@0.1 Details and Download
HRNet-w48+Dark 256x256 0.905 0.360 hrnet_dark_mpii.md
HRNet-w48 256x256 0.902 0.303 hrnet_mpii.md
HRNet-w48 256x256 0.901 0.337 hrnet_mpii.md
HRNet-w32 256x256 0.900 0.334 hrnet_mpii.md
HourglassNet 256x256 0.889 0.317 hourglass_mpii.md
ResNet-152 256x256 0.889 0.303 resnet_mpii.md
ResNetV1d-152 256x256 0.888 0.300 resnetv1d_mpii.md
SCNet-50 256x256 0.888 0.290 scnet_mpii.md
ResNeXt-152 256x256 0.887 0.294 resnext_mpii.md
SEResNet-50 256x256 0.884 0.292 seresnet_mpii.md
ResNet-50 256x256 0.882 0.286 resnet_mpii.md
ResNetV1d-50 256x256 0.881 0.290 resnetv1d_mpii.md
CPM 368x368* 0.876 0.285 cpm_mpii.md
LiteHRNet-30 256x256 0.869 0.271 litehrnet_mpii.md
LiteHRNet-18 256x256 0.859 0.260 litehrnet_mpii.md
MobileNet-v2 256x256 0.854 0.234 mobilenetv2_mpii.md
ShuffleNet-v2 256x256 0.828 0.205 shufflenetv2_mpii.md
ShuffleNet-v1 256x256 0.824 0.195 shufflenetv1_mpii.md

CrowdPose Dataset

Results on CrowdPose test with YOLOv3 human detector

Model Input Size AP AR Details and Download
HRNet-w32 256x192 0.675 0.816 hrnet_crowdpose.md
CSPNeXt-m 256x192 0.662 0.755 hrnet_crowdpose.md
ResNet-101 256x192 0.647 0.800 resnet_crowdpose.md
HRNet-w32 256x192 0.637 0.785 resnet_crowdpose.md

AIC Dataset

Results on AIC val set with ground-truth bounding boxes.

Model Input Size AP AR Details and Download
HRNet-w32 256x192 0.323 0.366 hrnet_aic.md
ResNet-101 256x192 0.294 0.337 resnet_aic.md

JHMDB Dataset

Model Input Size PCK(norm. by person size) PCK (norm. by torso size) Details and Download
ResNet-50 256x256 96.0 80.1 resnet_jhmdb.md
CPM 368x368 89.8 65.7 cpm_jhmdb.md

PoseTrack2018 Dataset

Results on PoseTrack2018 val with ground-truth bounding boxes.

Model Input Size AP Details and Download
HRNet-w48 256x192 84.6 hrnet_posetrack18.md
HRNet-w32 256x192 83.4 hrnet_posetrack18.md
ResNet-50 256x192 81.2 resnet_posetrack18.md