DJW cdece0b32a 第一次提交 | 10 kuukautta sitten | |
---|---|---|
.. | ||
aic | 10 kuukautta sitten | |
coco | 10 kuukautta sitten | |
crowdpose | 10 kuukautta sitten | |
jhmdb | 10 kuukautta sitten | |
mpii | 10 kuukautta sitten | |
posetrack18 | 10 kuukautta sitten | |
README.md | 10 kuukautta sitten |
Top-down methods divide the task into two stages: object detection, followed by single-object pose estimation given object bounding boxes. Instead of estimating keypoint coordinates directly, the pose estimator will produce heatmaps which represent the likelihood of being a keypoint, following the paradigm introduced in Simple Baselines for Human Pose Estimation and Tracking.
Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset
Model | Input Size | AP | AR | Details and Download |
---|---|---|---|---|
ViTPose-h | 256x192 | 0.790 | 0.840 | vitpose_coco.md |
HRNet-w48+UDP | 256x192 | 0.768 | 0.817 | hrnet_udp_coco.md |
MSPN 4-stg | 256x192 | 0.765 | 0.826 | mspn_coco.md |
HRNet-w48+Dark | 256x192 | 0.764 | 0.814 | hrnet_dark_coco.md |
HRNet-w48 | 256x192 | 0.756 | 0.809 | hrnet_coco.md |
HRFormer-B | 256x192 | 0.754 | 0.807 | hrformer_coco.md |
RSN-50-3x | 256x192 | 0.750 | 0.814 | rsn_coco.md |
CSPNeXt-l | 256x192 | 0.750 | 0.800 | cspnext_udp_coco.md |
HRNet-w32 | 256x192 | 0.749 | 0.804 | hrnet_coco.md |
Swin-L | 256x192 | 0.743 | 0.798 | swin_coco.md |
ViTPose-s | 256x192 | 0.739 | 0.792 | vitpose_coco.md |
HRFormer-S | 256x192 | 0.738 | 0.793 | hrformer_coco.md |
Swin-B | 256x192 | 0.737 | 0.794 | swin_coco.md |
SEResNet-101 | 256x192 | 0.734 | 0.790 | seresnet_coco.md |
SCNet-101 | 256x192 | 0.733 | 0.789 | scnet_coco.md |
ResNet-101+Dark | 256x192 | 0.733 | 0.786 | resnet_dark_coco.md |
CSPNeXt-m | 256x192 | 0.732 | 0.785 | cspnext_udp_coco.md |
ResNetV1d-101 | 256x192 | 0.732 | 0.785 | resnetv1d_coco.md |
SEResNet-50 | 256x192 | 0.729 | 0.784 | seresnet_coco.md |
SCNet-50 | 256x192 | 0.728 | 0.784 | scnet_coco.md |
ResNet-101 | 256x192 | 0.726 | 0.783 | resnet_coco.md |
ResNeXt-101 | 256x192 | 0.726 | 0.781 | resnext_coco.md |
HourglassNet | 256x256 | 0.726 | 0.780 | hourglass_coco.md |
ResNeSt-101 | 256x192 | 0.725 | 0.781 | resnest_coco.md |
RSN-50 | 256x192 | 0.724 | 0.790 | rsn_coco.md |
Swin-T | 256x192 | 0.724 | 0.782 | swin_coco.md |
MSPN 1-stg | 256x192 | 0.723 | 0.788 | mspn_coco.md |
ResNetV1d-50 | 256x192 | 0.722 | 0.777 | resnetv1d_coco.md |
ResNeSt-50 | 256x192 | 0.720 | 0.775 | resnest_coco.md |
ResNet-50 | 256x192 | 0.718 | 0.774 | resnet_coco.md |
ResNeXt-50 | 256x192 | 0.715 | 0.771 | resnext_coco.md |
PVT-S | 256x192 | 0.714 | 0.773 | pvt_coco.md |
CSPNeXt-s | 256x192 | 0.697 | 0.753 | cspnext_udp_coco.md |
LiteHRNet-30 | 256x192 | 0.676 | 0.736 | litehrnet_coco.md |
CSPNeXt-tiny | 256x192 | 0.665 | 0.723 | cspnext_udp_coco.md |
MobileNet-v2 | 256x192 | 0.648 | 0.709 | mobilenetv2_coco.md |
LiteHRNet-18 | 256x192 | 0.642 | 0.705 | litehrnet_coco.md |
CPM | 256x192 | 0.627 | 0.689 | cpm_coco.md |
ShuffleNet-v2 | 256x192 | 0.602 | 0.668 | shufflenetv2_coco.md |
ShuffleNet-v1 | 256x192 | 0.587 | 0.654 | shufflenetv1_coco.md |
AlexNet | 256x192 | 0.448 | 0.521 | alexnet_coco.md |
Model | Input Size | PCKh@0.5 | PCKh@0.1 | Details and Download |
---|---|---|---|---|
HRNet-w48+Dark | 256x256 | 0.905 | 0.360 | hrnet_dark_mpii.md |
HRNet-w48 | 256x256 | 0.902 | 0.303 | hrnet_mpii.md |
HRNet-w48 | 256x256 | 0.901 | 0.337 | hrnet_mpii.md |
HRNet-w32 | 256x256 | 0.900 | 0.334 | hrnet_mpii.md |
HourglassNet | 256x256 | 0.889 | 0.317 | hourglass_mpii.md |
ResNet-152 | 256x256 | 0.889 | 0.303 | resnet_mpii.md |
ResNetV1d-152 | 256x256 | 0.888 | 0.300 | resnetv1d_mpii.md |
SCNet-50 | 256x256 | 0.888 | 0.290 | scnet_mpii.md |
ResNeXt-152 | 256x256 | 0.887 | 0.294 | resnext_mpii.md |
SEResNet-50 | 256x256 | 0.884 | 0.292 | seresnet_mpii.md |
ResNet-50 | 256x256 | 0.882 | 0.286 | resnet_mpii.md |
ResNetV1d-50 | 256x256 | 0.881 | 0.290 | resnetv1d_mpii.md |
CPM | 368x368* | 0.876 | 0.285 | cpm_mpii.md |
LiteHRNet-30 | 256x256 | 0.869 | 0.271 | litehrnet_mpii.md |
LiteHRNet-18 | 256x256 | 0.859 | 0.260 | litehrnet_mpii.md |
MobileNet-v2 | 256x256 | 0.854 | 0.234 | mobilenetv2_mpii.md |
ShuffleNet-v2 | 256x256 | 0.828 | 0.205 | shufflenetv2_mpii.md |
ShuffleNet-v1 | 256x256 | 0.824 | 0.195 | shufflenetv1_mpii.md |
Results on CrowdPose test with YOLOv3 human detector
Model | Input Size | AP | AR | Details and Download |
---|---|---|---|---|
HRNet-w32 | 256x192 | 0.675 | 0.816 | hrnet_crowdpose.md |
CSPNeXt-m | 256x192 | 0.662 | 0.755 | hrnet_crowdpose.md |
ResNet-101 | 256x192 | 0.647 | 0.800 | resnet_crowdpose.md |
HRNet-w32 | 256x192 | 0.637 | 0.785 | resnet_crowdpose.md |
Results on AIC val set with ground-truth bounding boxes.
Model | Input Size | AP | AR | Details and Download |
---|---|---|---|---|
HRNet-w32 | 256x192 | 0.323 | 0.366 | hrnet_aic.md |
ResNet-101 | 256x192 | 0.294 | 0.337 | resnet_aic.md |
Model | Input Size | PCK(norm. by person size) | PCK (norm. by torso size) | Details and Download |
---|---|---|---|---|
ResNet-50 | 256x256 | 96.0 | 80.1 | resnet_jhmdb.md |
CPM | 368x368 | 89.8 | 65.7 | cpm_jhmdb.md |
Results on PoseTrack2018 val with ground-truth bounding boxes.
Model | Input Size | AP | Details and Download |
---|---|---|---|
HRNet-w48 | 256x192 | 84.6 | hrnet_posetrack18.md |
HRNet-w32 | 256x192 | 83.4 | hrnet_posetrack18.md |
ResNet-50 | 256x192 | 81.2 | resnet_posetrack18.md |