@inproceedings{geng2021bottom,
title={Bottom-up human pose estimation via disentangled keypoint regression},
author={Geng, Zigang and Sun, Ke and Xiao, Bin and Zhang, Zhaoxiang and Wang, Jingdong},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={14676--14686},
year={2021}
}
@inproceedings{sun2019deep,
title={Deep high-resolution representation learning for human pose estimation},
author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={5693--5703},
year={2019}
}
@article{li2018crowdpose,
title={CrowdPose: Efficient Crowded Scenes Pose Estimation and A New Benchmark},
author={Li, Jiefeng and Wang, Can and Zhu, Hao and Mao, Yihuan and Fang, Hao-Shu and Lu, Cewu},
journal={arXiv preprint arXiv:1812.00324},
year={2018}
}
Results on CrowdPose test without multi-scale test
Arch | Input Size | AP | AP50 | AP75 | AP (E) | AP (M) | AP (H) | ckpt | log |
---|---|---|---|---|---|---|---|---|---|
HRNet-w32 | 512x512 | 0.663 | 0.857 | 0.714 | 0.740 | 0.671 | 0.576 | ckpt | log |
HRNet-w48 | 640x640 | 0.679 | 0.869 | 0.731 | 0.753 | 0.688 | 0.593 | ckpt | log |