# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp from mmengine.config import Config, DictAction from mmengine.runner import Runner def parse_args(): parser = argparse.ArgumentParser(description='Train a pose model') parser.add_argument('config', help='train config file path') parser.add_argument('--work-dir', help='the dir to save logs and models') parser.add_argument( '--resume', nargs='?', type=str, const='auto', help='If specify checkpint path, resume from it, while if not ' 'specify, try to auto resume from the latest checkpoint ' 'in the work directory.') parser.add_argument( '--amp', action='store_true', default=False, help='enable automatic-mixed-precision training') parser.add_argument( '--no-validate', action='store_true', help='whether not to evaluate the checkpoint during training') parser.add_argument( '--auto-scale-lr', action='store_true', help='whether to auto scale the learning rate according to the ' 'actual batch size and the original batch size.') parser.add_argument( '--show-dir', help='directory where the visualization images will be saved.') parser.add_argument( '--show', action='store_true', help='whether to display the prediction results in a window.') parser.add_argument( '--interval', type=int, default=1, help='visualize per interval samples.') parser.add_argument( '--wait-time', type=float, default=1, help='display time of every window. (second)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') # When using PyTorch version >= 2.0.0, the `torch.distributed.launch` # will pass the `--local-rank` parameter to `tools/train.py` instead # of `--local_rank`. parser.add_argument('--local_rank', '--local-rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def merge_args(cfg, args): """Merge CLI arguments to config.""" if args.no_validate: cfg.val_cfg = None cfg.val_dataloader = None cfg.val_evaluator = None cfg.launcher = args.launcher # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) # enable automatic-mixed-precision training if args.amp is True: optim_wrapper = cfg.optim_wrapper.get('type', 'OptimWrapper') assert optim_wrapper in ['OptimWrapper', 'AmpOptimWrapper'], \ '`--amp` is not supported custom optimizer wrapper type ' \ f'`{optim_wrapper}.' cfg.optim_wrapper.type = 'AmpOptimWrapper' cfg.optim_wrapper.setdefault('loss_scale', 'dynamic') # resume training if args.resume == 'auto': cfg.resume = True cfg.load_from = None elif args.resume is not None: cfg.resume = True cfg.load_from = args.resume # enable auto scale learning rate if args.auto_scale_lr: cfg.auto_scale_lr.enable = True # visualization- if args.show or (args.show_dir is not None): assert 'visualization' in cfg.default_hooks, \ 'PoseVisualizationHook is not set in the ' \ '`default_hooks` field of config. Please set ' \ '`visualization=dict(type="PoseVisualizationHook")`' cfg.default_hooks.visualization.enable = True cfg.default_hooks.visualization.show = args.show if args.show: cfg.default_hooks.visualization.wait_time = args.wait_time cfg.default_hooks.visualization.out_dir = args.show_dir cfg.default_hooks.visualization.interval = args.interval if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) return cfg def main(): args = parse_args() # load config cfg = Config.fromfile(args.config) # merge CLI arguments to config cfg = merge_args(cfg, args) # set preprocess configs to model if 'preprocess_cfg' in cfg: cfg.model.setdefault('data_preprocessor', cfg.get('preprocess_cfg', {})) # build the runner from config runner = Runner.from_cfg(cfg) # start training runner.train() if __name__ == '__main__': main()