# Copyright (c) OpenMMLab. All rights reserved. import os import os.path as osp import warnings from argparse import ArgumentParser import requests from mmpose.apis import (inference_bottom_up_pose_model, inference_top_down_pose_model, init_pose_model, vis_pose_result) from mmpose.models import AssociativeEmbedding, TopDown def parse_args(): parser = ArgumentParser() parser.add_argument('img', help='Image file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument('model_name', help='The model name in the server') parser.add_argument( '--inference-addr', default='127.0.0.1:8080', help='Address and port of the inference server') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--out-dir', default='vis_results', help='Visualization output path') args = parser.parse_args() return args def main(args): os.makedirs(args.out_dir, exist_ok=True) # Inference single image by native apis. model = init_pose_model(args.config, args.checkpoint, device=args.device) if isinstance(model, TopDown): pytorch_result, _ = inference_top_down_pose_model( model, args.img, person_results=None) elif isinstance(model, (AssociativeEmbedding, )): pytorch_result, _ = inference_bottom_up_pose_model(model, args.img) else: raise NotImplementedError() vis_pose_result( model, args.img, pytorch_result, out_file=osp.join(args.out_dir, 'pytorch_result.png')) # Inference single image by torchserve engine. url = 'http://' + args.inference_addr + '/predictions/' + args.model_name with open(args.img, 'rb') as image: response = requests.post(url, image) server_result = response.json() vis_pose_result( model, args.img, server_result, out_file=osp.join(args.out_dir, 'torchserve_result.png')) if __name__ == '__main__': args = parse_args() main(args) # Following strings of text style are from colorama package bright_style, reset_style = '\x1b[1m', '\x1b[0m' red_text, blue_text = '\x1b[31m', '\x1b[34m' white_background = '\x1b[107m' msg = white_background + bright_style + red_text msg += 'DeprecationWarning: This tool will be deprecated in future. ' msg += blue_text + 'Welcome to use the unified model deployment toolbox ' msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy' msg += reset_style warnings.warn(msg)