# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from torch.nn.modules.batchnorm import _BatchNorm from mmpose.models.backbones import SCNet from mmpose.models.backbones.scnet import SCBottleneck, SCConv class TestSCnet(TestCase): @staticmethod def is_block(modules): """Check if is SCNet building block.""" if isinstance(modules, (SCBottleneck, )): return True return False @staticmethod def is_norm(modules): """Check if is one of the norms.""" if isinstance(modules, (_BatchNorm, )): return True return False @staticmethod def all_zeros(modules): """Check if the weight(and bias) is all zero.""" weight_zero = torch.equal(modules.weight.data, torch.zeros_like(modules.weight.data)) if hasattr(modules, 'bias'): bias_zero = torch.equal(modules.bias.data, torch.zeros_like(modules.bias.data)) else: bias_zero = True return weight_zero and bias_zero @staticmethod def check_norm_state(modules, train_state): """Check if norm layer is in correct train state.""" for mod in modules: if isinstance(mod, _BatchNorm): if mod.training != train_state: return False return True def test_scnet_scconv(self): # Test scconv forward layer = SCConv(64, 64, 1, 4) x = torch.randn(1, 64, 56, 56) x_out = layer(x) self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56])) def test_scnet_bottleneck(self): # Test Bottleneck forward block = SCBottleneck(64, 64) x = torch.randn(1, 64, 56, 56) x_out = block(x) self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56])) def test_scnet_backbone(self): """Test scnet backbone.""" with self.assertRaises(KeyError): # SCNet depth should be in [50, 101] SCNet(20) with self.assertRaises(TypeError): # pretrained must be a string path model = SCNet(50) model.init_weights(pretrained=0) # Test SCNet norm_eval=True model = SCNet(50, norm_eval=True) model.init_weights() model.train() self.assertTrue(self.check_norm_state(model.modules(), False)) # Test SCNet50 with first stage frozen frozen_stages = 1 model = SCNet(50, frozen_stages=frozen_stages) model.init_weights() model.train() self.assertFalse(model.norm1.training) for layer in [model.conv1, model.norm1]: for param in layer.parameters(): self.assertFalse(param.requires_grad) for i in range(1, frozen_stages + 1): layer = getattr(model, f'layer{i}') for mod in layer.modules(): if isinstance(mod, _BatchNorm): self.assertFalse(mod.training) for param in layer.parameters(): self.assertFalse(param.requires_grad) # Test SCNet with BatchNorm forward model = SCNet(50, out_indices=(0, 1, 2, 3)) for m in model.modules(): if self.is_norm(m): self.assertIsInstance(m, _BatchNorm) model.init_weights() model.train() imgs = torch.randn(2, 3, 224, 224) feat = model(imgs) self.assertEqual(len(feat), 4) self.assertEqual(feat[0].shape, torch.Size([2, 256, 56, 56])) self.assertEqual(feat[1].shape, torch.Size([2, 512, 28, 28])) self.assertEqual(feat[2].shape, torch.Size([2, 1024, 14, 14])) self.assertEqual(feat[3].shape, torch.Size([2, 2048, 7, 7])) # Test SCNet with layers 1, 2, 3 out forward model = SCNet(50, out_indices=(0, 1, 2)) model.init_weights() model.train() imgs = torch.randn(2, 3, 224, 224) feat = model(imgs) self.assertEqual(len(feat), 3) self.assertEqual(feat[0].shape, torch.Size([2, 256, 56, 56])) self.assertEqual(feat[1].shape, torch.Size([2, 512, 28, 28])) self.assertEqual(feat[2].shape, torch.Size([2, 1024, 14, 14])) # Test SEResNet50 with layers 3 (top feature maps) out forward model = SCNet(50, out_indices=(3, )) model.init_weights() model.train() imgs = torch.randn(2, 3, 224, 224) feat = model(imgs) self.assertIsInstance(feat, tuple) self.assertEqual(feat[-1].shape, torch.Size([2, 2048, 7, 7])) # Test SEResNet50 with checkpoint forward model = SCNet(50, out_indices=(0, 1, 2, 3), with_cp=True) for m in model.modules(): if self.is_block(m): self.assertTrue(m.with_cp) model.init_weights() model.train() imgs = torch.randn(2, 3, 224, 224) feat = model(imgs) self.assertEqual(len(feat), 4) self.assertEqual(feat[0].shape, torch.Size([2, 256, 56, 56])) self.assertEqual(feat[1].shape, torch.Size([2, 512, 28, 28])) self.assertEqual(feat[2].shape, torch.Size([2, 1024, 14, 14])) self.assertEqual(feat[3].shape, torch.Size([2, 2048, 7, 7])) # Test SCNet zero initialization of residual model = SCNet(50, out_indices=(0, 1, 2, 3), zero_init_residual=True) model.init_weights() for m in model.modules(): if isinstance(m, SCBottleneck): self.assertTrue(self.all_zeros(m.norm3)) model.train() imgs = torch.randn(2, 3, 224, 224) feat = model(imgs) self.assertEqual(len(feat), 4) self.assertEqual(feat[0].shape, torch.Size([2, 256, 56, 56])) self.assertEqual(feat[1].shape, torch.Size([2, 512, 28, 28])) self.assertEqual(feat[2].shape, torch.Size([2, 1024, 14, 14])) self.assertEqual(feat[3].shape, torch.Size([2, 2048, 7, 7]))