# 2D Hand Keypoint Datasets It is recommended to symlink the dataset root to `$MMPOSE/data`. If your folder structure is different, you may need to change the corresponding paths in config files. MMPose supported datasets: - [OneHand10K](#onehand10k) \[ [Homepage](https://www.yangangwang.com/papers/WANG-MCC-2018-10.html) \] - [FreiHand](#freihand-dataset) \[ [Homepage](https://lmb.informatik.uni-freiburg.de/projects/freihand/) \] - [CMU Panoptic HandDB](#cmu-panoptic-handdb) \[ [Homepage](http://domedb.perception.cs.cmu.edu/handdb.html) \] - [InterHand2.6M](#interhand26m) \[ [Homepage](https://mks0601.github.io/InterHand2.6M/) \] - [RHD](#rhd-dataset) \[ [Homepage](https://lmb.informatik.uni-freiburg.de/resources/datasets/RenderedHandposeDataset.en.html) \] - [COCO-WholeBody-Hand](#coco-wholebody-hand) \[ [Homepage](https://github.com/jin-s13/COCO-WholeBody/) \] ## OneHand10K
OneHand10K (TCSVT'2019) ```bibtex @article{wang2018mask, title={Mask-pose cascaded cnn for 2d hand pose estimation from single color image}, author={Wang, Yangang and Peng, Cong and Liu, Yebin}, journal={IEEE Transactions on Circuits and Systems for Video Technology}, volume={29}, number={11}, pages={3258--3268}, year={2018}, publisher={IEEE} } ```
For [OneHand10K](https://www.yangangwang.com/papers/WANG-MCC-2018-10.html) data, please download from [OneHand10K Dataset](https://www.yangangwang.com/papers/WANG-MCC-2018-10.html). Please download the annotation files from [onehand10k_annotations](https://download.openmmlab.com/mmpose/datasets/onehand10k_annotations.tar). Extract them under {MMPose}/data, and make them look like this: ```text mmpose ├── mmpose ├── docs ├── tests ├── tools ├── configs `── data │── onehand10k |── annotations | |── onehand10k_train.json | |── onehand10k_test.json `── Train | |── source | |── 0.jpg | |── 1.jpg | ... `── Test |── source |── 0.jpg |── 1.jpg ``` ## FreiHAND Dataset
FreiHand (ICCV'2019) ```bibtex @inproceedings{zimmermann2019freihand, title={Freihand: A dataset for markerless capture of hand pose and shape from single rgb images}, author={Zimmermann, Christian and Ceylan, Duygu and Yang, Jimei and Russell, Bryan and Argus, Max and Brox, Thomas}, booktitle={Proceedings of the IEEE International Conference on Computer Vision}, pages={813--822}, year={2019} } ```
For [FreiHAND](https://lmb.informatik.uni-freiburg.de/projects/freihand/) data, please download from [FreiHand Dataset](https://lmb.informatik.uni-freiburg.de/resources/datasets/FreihandDataset.en.html). Since the official dataset does not provide validation set, we randomly split the training data into 8:1:1 for train/val/test. Please download the annotation files from [freihand_annotations](https://download.openmmlab.com/mmpose/datasets/frei_annotations.tar). Extract them under {MMPose}/data, and make them look like this: ```text mmpose ├── mmpose ├── docs ├── tests ├── tools ├── configs `── data │── freihand |── annotations | |── freihand_train.json | |── freihand_val.json | |── freihand_test.json `── training |── rgb | |── 00000000.jpg | |── 00000001.jpg | ... |── mask |── 00000000.jpg |── 00000001.jpg ... ``` ## CMU Panoptic HandDB
CMU Panoptic HandDB (CVPR'2017) ```bibtex @inproceedings{simon2017hand, title={Hand keypoint detection in single images using multiview bootstrapping}, author={Simon, Tomas and Joo, Hanbyul and Matthews, Iain and Sheikh, Yaser}, booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition}, pages={1145--1153}, year={2017} } ```
For [CMU Panoptic HandDB](http://domedb.perception.cs.cmu.edu/handdb.html), please download from [CMU Panoptic HandDB](http://domedb.perception.cs.cmu.edu/handdb.html). Following [Simon et al](https://arxiv.org/abs/1704.07809), panoptic images (hand143_panopticdb) and MPII & NZSL training sets (manual_train) are used for training, while MPII & NZSL test set (manual_test) for testing. Please download the annotation files from [panoptic_annotations](https://download.openmmlab.com/mmpose/datasets/panoptic_annotations.tar). Extract them under {MMPose}/data, and make them look like this: ```text mmpose ├── mmpose ├── docs ├── tests ├── tools ├── configs `── data │── panoptic |── annotations | |── panoptic_train.json | |── panoptic_test.json | `── hand143_panopticdb | |── imgs | | |── 00000000.jpg | | |── 00000001.jpg | | ... | `── hand_labels |── manual_train | |── 000015774_01_l.jpg | |── 000015774_01_r.jpg | ... | `── manual_test |── 000648952_02_l.jpg |── 000835470_01_l.jpg ... ``` ## InterHand2.6M
InterHand2.6M (ECCV'2020) ```bibtex @InProceedings{Moon_2020_ECCV_InterHand2.6M, author = {Moon, Gyeongsik and Yu, Shoou-I and Wen, He and Shiratori, Takaaki and Lee, Kyoung Mu}, title = {InterHand2.6M: A Dataset and Baseline for 3D Interacting Hand Pose Estimation from a Single RGB Image}, booktitle = {European Conference on Computer Vision (ECCV)}, year = {2020} } ```
For [InterHand2.6M](https://mks0601.github.io/InterHand2.6M/), please download from [InterHand2.6M](https://mks0601.github.io/InterHand2.6M/). Please download the annotation files from [annotations](https://drive.google.com/drive/folders/1pWXhdfaka-J0fSAze0MsajN0VpZ8e8tO). Extract them under {MMPose}/data, and make them look like this: ```text mmpose ├── mmpose ├── docs ├── tests ├── tools ├── configs `── data │── interhand2.6m |── annotations | |── all | |── human_annot | |── machine_annot | |── skeleton.txt | |── subject.txt | `── images | |── train | | |-- Capture0 ~ Capture26 | |── val | | |-- Capture0 | |── test | | |-- Capture0 ~ Capture7 ``` ## RHD Dataset
RHD (ICCV'2017) ```bibtex @TechReport{zb2017hand, author={Christian Zimmermann and Thomas Brox}, title={Learning to Estimate 3D Hand Pose from Single RGB Images}, institution={arXiv:1705.01389}, year={2017}, note="https://arxiv.org/abs/1705.01389", url="https://lmb.informatik.uni-freiburg.de/projects/hand3d/" } ```
For [RHD Dataset](https://lmb.informatik.uni-freiburg.de/resources/datasets/RenderedHandposeDataset.en.html), please download from [RHD Dataset](https://lmb.informatik.uni-freiburg.de/resources/datasets/RenderedHandposeDataset.en.html). Please download the annotation files from [rhd_annotations](https://download.openmmlab.com/mmpose/datasets/rhd_annotations.zip). Extract them under {MMPose}/data, and make them look like this: ```text mmpose ├── mmpose ├── docs ├── tests ├── tools ├── configs `── data │── rhd |── annotations | |── rhd_train.json | |── rhd_test.json `── training | |── color | | |── 00000.jpg | | |── 00001.jpg | |── depth | | |── 00000.jpg | | |── 00001.jpg | |── mask | | |── 00000.jpg | | |── 00001.jpg `── evaluation | |── color | | |── 00000.jpg | | |── 00001.jpg | |── depth | | |── 00000.jpg | | |── 00001.jpg | |── mask | | |── 00000.jpg | | |── 00001.jpg ``` ## COCO-WholeBody (Hand)
COCO-WholeBody-Hand (ECCV'2020) ```bibtex @inproceedings{jin2020whole, title={Whole-Body Human Pose Estimation in the Wild}, author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping}, booktitle={Proceedings of the European Conference on Computer Vision (ECCV)}, year={2020} } ```
For [COCO-WholeBody](https://github.com/jin-s13/COCO-WholeBody/) dataset, images can be downloaded from [COCO download](http://cocodataset.org/#download), 2017 Train/Val is needed for COCO keypoints training and validation. Download COCO-WholeBody annotations for COCO-WholeBody annotations for [Train](https://drive.google.com/file/d/1thErEToRbmM9uLNi1JXXfOsaS5VK2FXf/view?usp=sharing) / [Validation](https://drive.google.com/file/d/1N6VgwKnj8DeyGXCvp1eYgNbRmw6jdfrb/view?usp=sharing) (Google Drive). Download person detection result of COCO val2017 from [OneDrive](https://1drv.ms/f/s!AhIXJn_J-blWzzDXoz5BeFl8sWM-) or [GoogleDrive](https://drive.google.com/drive/folders/1fRUDNUDxe9fjqcRZ2bnF_TKMlO0nB_dk?usp=sharing). Download and extract them under $MMPOSE/data, and make them look like this: ```text mmpose ├── mmpose ├── docs ├── tests ├── tools ├── configs `── data │── coco │-- annotations │ │-- coco_wholebody_train_v1.0.json │ |-- coco_wholebody_val_v1.0.json |-- person_detection_results | |-- COCO_val2017_detections_AP_H_56_person.json │-- train2017 │ │-- 000000000009.jpg │ │-- 000000000025.jpg │ │-- 000000000030.jpg │ │-- ... `-- val2017 │-- 000000000139.jpg │-- 000000000285.jpg │-- 000000000632.jpg │-- ... ``` Please also install the latest version of [Extended COCO API](https://github.com/jin-s13/xtcocoapi) to support COCO-WholeBody evaluation: `pip install xtcocotools`