# Top-down heatmap-based pose estimation Top-down methods divide the task into two stages: object detection, followed by single-object pose estimation given object bounding boxes. Instead of estimating keypoint coordinates directly, the pose estimator will produce heatmaps which represent the likelihood of being a keypoint, following the paradigm introduced in [Simple Baselines for Human Pose Estimation and Tracking](http://openaccess.thecvf.com/content_ECCV_2018/html/Bin_Xiao_Simple_Baselines_for_ECCV_2018_paper.html).
## Results and Models ### 300W Dataset Results on 300W dataset | Model | Input Size | NME*common* | NME*challenge* | NME*full* | NME*test* | Details and Download | | :---------: | :--------: | :--------------------: | :-----------------------: | :------------------: | :------------------: | :---------------------------------------: | | HRNetv2-w18 | 256x256 | 2.92 | 5.64 | 3.45 | 4.10 | [hrnetv2_300w.md](./300w/hrnetv2_300w.md) | ### AFLW Dataset Results on AFLW dataset | Model | Input Size | NME*full* | NME*frontal* | Details and Download | | :--------------: | :--------: | :------------------: | :---------------------: | :-------------------------------------------------: | | HRNetv2-w18+Dark | 256x256 | 1.35 | 1.19 | [hrnetv2_dark_aflw.md](./aflw/hrnetv2_dark_aflw.md) | | HRNetv2-w18 | 256x256 | 1.41 | 1.27 | [hrnetv2_aflw.md](./aflw/hrnetv2_aflw.md) | ### COCO-WholeBody-Face Dataset Results on COCO-WholeBody-Face val set | Model | Input Size | NME | Details and Download | | :--------------: | :--------: | :----: | :----------------------------------------------------------------------------------------------: | | HRNetv2-w18+Dark | 256x256 | 0.0513 | [hrnetv2_dark_coco_wholebody_face.md](./coco_wholebody_face/hrnetv2_dark_coco_wholebody_face.md) | | SCNet-50 | 256x256 | 0.0567 | [scnet_coco_wholebody_face.md](./coco_wholebody_face/scnet_coco_wholebody_face.md) | | HRNetv2-w18 | 256x256 | 0.0569 | [hrnetv2_coco_wholebody_face.md](./coco_wholebody_face/hrnetv2_coco_wholebody_face.md) | | ResNet-50 | 256x256 | 0.0582 | [resnet_coco_wholebody_face.md](./coco_wholebody_face/resnet_coco_wholebody_face.md) | | HourglassNet | 256x256 | 0.0587 | [hourglass_coco_wholebody_face.md](./coco_wholebody_face/hourglass_coco_wholebody_face.md) | | MobileNet-v2 | 256x256 | 0.0611 | [mobilenetv2_coco_wholebody_face.md](./coco_wholebody_face/mobilenetv2_coco_wholebody_face.md) | ### COFW Dataset Results on COFW dataset | Model | Input Size | NME | Details and Download | | :---------: | :--------: | :--: | :---------------------------------------: | | HRNetv2-w18 | 256x256 | 3.48 | [hrnetv2_cofw.md](./cofw/hrnetv2_cofw.md) | ### WFLW Dataset Results on WFLW dataset | Model | Input Size | NME*test* | NME*pose* | NME*illumination* | NME*occlusion* | NME*blur* | NME*makeup* | NME*expression* | Details and Download | | :-----: | :--------: | :------------------: | :------------------: | :--------------------------: | :-----------------------: | :------------------: | :--------------------: | :------------------------: | :--------------------: | | HRNetv2-w18+Dark | 256x256 | 3.98 | 6.98 | 3.96 | 4.78 | 4.56 | 3.89 | 4.29 | [hrnetv2_dark_wflw.md](./wflw/hrnetv2_dark_wflw.md) | | HRNetv2-w18+AWing | 256x256 | 4.02 | 6.94 | 3.97 | 4.78 | 4.59 | 3.87 | 4.28 | [hrnetv2_awing_wflw.md](./wflw/hrnetv2_awing_wflw.md) | | HRNetv2-w18 | 256x256 | 4.06 | 6.97 | 3.99 | 4.83 | 4.58 | 3.94 | 4.33 | [hrnetv2_wflw.md](./wflw/hrnetv2_wflw.md) |