HRNet (CVPR'2019)
```bibtex
@inproceedings{sun2019deep,
title={Deep high-resolution representation learning for human pose estimation},
author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={5693--5703},
year={2019}
}
```
COCO (ECCV'2014)
```bibtex
@inproceedings{lin2014microsoft,
title={Microsoft coco: Common objects in context},
author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
booktitle={European conference on computer vision},
pages={740--755},
year={2014},
organization={Springer}
}
```
Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset
| Arch | Input Size | AP | AP50 | AP75 | AR | AR50 | ckpt | log |
| :-------------------------------------------- | :--------: | :---: | :-------------: | :-------------: | :---: | :-------------: | :-------------------------------------------: | :-------------------------------------------: |
| [pose_hrnet_w32](/configs/body_2d_keypoint/topdown_heatmap/coco/td-hm_hrnet-w32_8xb64-210e_coco-256x192.py) | 256x192 | 0.749 | 0.906 | 0.821 | 0.804 | 0.945 | [ckpt](https://download.openmmlab.com/mmpose/v1/body_2d_keypoint/topdown_heatmap/coco/td-hm_hrnet-w32_8xb64-210e_coco-256x192-81c58e40_20220909.pth) | [log](https://download.openmmlab.com/mmpose/v1/body_2d_keypoint/topdown_heatmap/coco/td-hm_hrnet-w32_8xb64-210e_coco-256x192_20220909.log) |
| [pose_hrnet_w32](/configs/body_2d_keypoint/topdown_heatmap/coco/td-hm_hrnet-w32_8xb64-210e_coco-384x288.py) | 384x288 | 0.761 | 0.908 | 0.826 | 0.811 | 0.944 | [ckpt](https://download.openmmlab.com/mmpose/v1/body_2d_keypoint/topdown_heatmap/coco/td-hm_hrnet-w32_8xb64-210e_coco-384x288-ca5956af_20220909.pth) | [log](https://download.openmmlab.com/mmpose/v1/body_2d_keypoint/topdown_heatmap/coco/td-hm_hrnet-w32_8xb64-210e_coco-384x288_20220909.log) |
| [pose_hrnet_w48](/configs/body_2d_keypoint/topdown_heatmap/coco/td-hm_hrnet-w48_8xb32-210e_coco-256x192.py) | 256x192 | 0.756 | 0.908 | 0.826 | 0.809 | 0.945 | [ckpt](https://download.openmmlab.com/mmpose/v1/body_2d_keypoint/topdown_heatmap/coco/td-hm_hrnet-w48_8xb32-210e_coco-256x192-0e67c616_20220913.pth) | [log](https://download.openmmlab.com/mmpose/v1/body_2d_keypoint/topdown_heatmap/coco/td-hm_hrnet-w48_8xb32-210e_coco-256x192_20220913.log) |
| [pose_hrnet_w48](/configs/body_2d_keypoint/topdown_heatmap/coco/td-hm_hrnet-w48_8xb32-210e_coco-384x288.py) | 384x288 | 0.767 | 0.911 | 0.832 | 0.817 | 0.947 | [ckpt](https://download.openmmlab.com/mmpose/v1/body_2d_keypoint/topdown_heatmap/coco/td-hm_hrnet-w48_8xb32-210e_coco-384x288-c161b7de_20220915.pth) | [log](https://download.openmmlab.com/mmpose/v1/body_2d_keypoint/topdown_heatmap/coco/td-hm_hrnet-w48_8xb32-210e_coco-384x288_20220915.log) |