# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from torch.nn.modules import AvgPool2d from torch.nn.modules.batchnorm import _BatchNorm from mmpose.models.backbones import SEResNet from mmpose.models.backbones.resnet import ResLayer from mmpose.models.backbones.seresnet import SEBottleneck, SELayer class TestSEResnet(TestCase): @staticmethod def all_zeros(modules): """Check if the weight(and bias) is all zero.""" weight_zero = torch.equal(modules.weight.data, torch.zeros_like(modules.weight.data)) if hasattr(modules, 'bias'): bias_zero = torch.equal(modules.bias.data, torch.zeros_like(modules.bias.data)) else: bias_zero = True return weight_zero and bias_zero @staticmethod def check_norm_state(modules, train_state): """Check if norm layer is in correct train state.""" for mod in modules: if isinstance(mod, _BatchNorm): if mod.training != train_state: return False return True def test_selayer(self): # Test selayer forward layer = SELayer(64) x = torch.randn(1, 64, 56, 56) x_out = layer(x) self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56])) # Test selayer forward with different ratio layer = SELayer(64, ratio=8) x = torch.randn(1, 64, 56, 56) x_out = layer(x) self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56])) def test_bottleneck(self): with self.assertRaises(AssertionError): # Style must be in ['pytorch', 'caffe'] SEBottleneck(64, 64, style='tensorflow') # Test SEBottleneck with checkpoint forward block = SEBottleneck(64, 64, with_cp=True) self.assertTrue(block.with_cp) x = torch.randn(1, 64, 56, 56) x_out = block(x) self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56])) # Test Bottleneck style block = SEBottleneck(64, 256, stride=2, style='pytorch') self.assertEqual(block.conv1.stride, (1, 1)) self.assertEqual(block.conv2.stride, (2, 2)) block = SEBottleneck(64, 256, stride=2, style='caffe') self.assertEqual(block.conv1.stride, (2, 2)) self.assertEqual(block.conv2.stride, (1, 1)) # Test Bottleneck forward block = SEBottleneck(64, 64) x = torch.randn(1, 64, 56, 56) x_out = block(x) self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56])) def test_res_layer(self): # Test ResLayer of 3 Bottleneck w\o downsample layer = ResLayer(SEBottleneck, 3, 64, 64, se_ratio=16) self.assertEqual(len(layer), 3) self.assertEqual(layer[0].conv1.in_channels, 64) self.assertEqual(layer[0].conv1.out_channels, 16) for i in range(1, len(layer)): self.assertEqual(layer[i].conv1.in_channels, 64) self.assertEqual(layer[i].conv1.out_channels, 16) for i in range(len(layer)): self.assertIsNone(layer[i].downsample) x = torch.randn(1, 64, 56, 56) x_out = layer(x) self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56])) # Test ResLayer of 3 SEBottleneck with downsample layer = ResLayer(SEBottleneck, 3, 64, 256, se_ratio=16) self.assertEqual(layer[0].downsample[0].out_channels, 256) for i in range(1, len(layer)): self.assertIsNone(layer[i].downsample) x = torch.randn(1, 64, 56, 56) x_out = layer(x) self.assertEqual(x_out.shape, torch.Size([1, 256, 56, 56])) # Test ResLayer of 3 SEBottleneck with stride=2 layer = ResLayer(SEBottleneck, 3, 64, 256, stride=2, se_ratio=8) self.assertEqual(layer[0].downsample[0].out_channels, 256) self.assertEqual(layer[0].downsample[0].stride, (2, 2)) for i in range(1, len(layer)): self.assertIsNone(layer[i].downsample) x = torch.randn(1, 64, 56, 56) x_out = layer(x) self.assertEqual(x_out.shape, torch.Size([1, 256, 28, 28])) # Test ResLayer of 3 SEBottleneck with stride=2 and average downsample layer = ResLayer( SEBottleneck, 3, 64, 256, stride=2, avg_down=True, se_ratio=8) self.assertIsInstance(layer[0].downsample[0], AvgPool2d) self.assertEqual(layer[0].downsample[1].out_channels, 256) self.assertEqual(layer[0].downsample[1].stride, (1, 1)) for i in range(1, len(layer)): self.assertIsNone(layer[i].downsample) x = torch.randn(1, 64, 56, 56) x_out = layer(x) self.assertEqual(x_out.shape, torch.Size([1, 256, 28, 28])) def test_seresnet(self): """Test resnet backbone.""" with self.assertRaises(KeyError): # SEResNet depth should be in [50, 101, 152] SEResNet(20) with self.assertRaises(AssertionError): # In SEResNet: 1 <= num_stages <= 4 SEResNet(50, num_stages=0) with self.assertRaises(AssertionError): # In SEResNet: 1 <= num_stages <= 4 SEResNet(50, num_stages=5) with self.assertRaises(AssertionError): # len(strides) == len(dilations) == num_stages SEResNet(50, strides=(1, ), dilations=(1, 1), num_stages=3) with self.assertRaises(AssertionError): # Style must be in ['pytorch', 'caffe'] SEResNet(50, style='tensorflow') # Test SEResNet50 norm_eval=True model = SEResNet(50, norm_eval=True) model.init_weights() model.train() self.assertTrue(self.check_norm_state(model.modules(), False)) # Test SEResNet50 with torchvision pretrained weight init_cfg = dict(type='Pretrained', checkpoint='torchvision://resnet50') model = SEResNet(depth=50, norm_eval=True, init_cfg=init_cfg) model.train() self.assertTrue(self.check_norm_state(model.modules(), False)) # Test SEResNet50 with first stage frozen frozen_stages = 1 model = SEResNet(50, frozen_stages=frozen_stages) model.init_weights() model.train() self.assertFalse(model.norm1.training) for layer in [model.conv1, model.norm1]: for param in layer.parameters(): self.assertFalse(param.requires_grad) for i in range(1, frozen_stages + 1): layer = getattr(model, f'layer{i}') for mod in layer.modules(): if isinstance(mod, _BatchNorm): self.assertFalse(mod.training) for param in layer.parameters(): self.assertFalse(param.requires_grad) # Test SEResNet50 with BatchNorm forward model = SEResNet(50, out_indices=(0, 1, 2, 3)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) self.assertEqual(len(feat), 4) self.assertEqual(feat[0].shape, torch.Size([1, 256, 56, 56])) self.assertEqual(feat[1].shape, torch.Size([1, 512, 28, 28])) self.assertEqual(feat[2].shape, torch.Size([1, 1024, 14, 14])) self.assertEqual(feat[3].shape, torch.Size([1, 2048, 7, 7])) # Test SEResNet50 with layers 1, 2, 3 out forward model = SEResNet(50, out_indices=(0, 1, 2)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) self.assertEqual(len(feat), 3) self.assertEqual(feat[0].shape, torch.Size([1, 256, 56, 56])) self.assertEqual(feat[1].shape, torch.Size([1, 512, 28, 28])) self.assertEqual(feat[2].shape, torch.Size([1, 1024, 14, 14])) # Test SEResNet50 with layers 3 (top feature maps) out forward model = SEResNet(50, out_indices=(3, )) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) self.assertIsInstance(feat, tuple) self.assertEqual(feat[-1].shape, torch.Size([1, 2048, 7, 7])) # Test SEResNet50 with checkpoint forward model = SEResNet(50, out_indices=(0, 1, 2, 3), with_cp=True) for m in model.modules(): if isinstance(m, SEBottleneck): self.assertTrue(m.with_cp) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) self.assertEqual(len(feat), 4) self.assertEqual(feat[0].shape, torch.Size([1, 256, 56, 56])) self.assertEqual(feat[1].shape, torch.Size([1, 512, 28, 28])) self.assertEqual(feat[2].shape, torch.Size([1, 1024, 14, 14])) self.assertEqual(feat[3].shape, torch.Size([1, 2048, 7, 7])) # Test SEResNet50 zero initialization of residual model = SEResNet(50, out_indices=(0, 1, 2, 3), zero_init_residual=True) model.init_weights() for m in model.modules(): if isinstance(m, SEBottleneck): self.assertTrue(self.all_zeros(m.norm3)) model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) self.assertEqual(len(feat), 4) self.assertEqual(feat[0].shape, torch.Size([1, 256, 56, 56])) self.assertEqual(feat[1].shape, torch.Size([1, 512, 28, 28])) self.assertEqual(feat[2].shape, torch.Size([1, 1024, 14, 14])) self.assertEqual(feat[3].shape, torch.Size([1, 2048, 7, 7]))