# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmpose.models.backbones import RegNet class TestRegnet(TestCase): regnet_test_data = [ ('regnetx_400mf', dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22, bot_mul=1.0), [32, 64, 160, 384]), ('regnetx_800mf', dict(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16, bot_mul=1.0), [64, 128, 288, 672]), ('regnetx_1.6gf', dict(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18, bot_mul=1.0), [72, 168, 408, 912]), ('regnetx_3.2gf', dict(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25, bot_mul=1.0), [96, 192, 432, 1008]), ('regnetx_4.0gf', dict(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23, bot_mul=1.0), [80, 240, 560, 1360]), ('regnetx_6.4gf', dict(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17, bot_mul=1.0), [168, 392, 784, 1624]), ('regnetx_8.0gf', dict(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23, bot_mul=1.0), [80, 240, 720, 1920]), ('regnetx_12gf', dict(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19, bot_mul=1.0), [224, 448, 896, 2240]), ] def _test_regnet_backbone(self, arch_name, arch, out_channels): with self.assertRaises(AssertionError): # ResNeXt depth should be in [50, 101, 152] RegNet(arch_name + '233') # output the last feature map model = RegNet(arch_name) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) self.assertIsInstance(feat, tuple) self.assertEqual(feat[-1].shape, (1, out_channels[-1], 7, 7)) # output feature map of all stages model = RegNet(arch_name, out_indices=(0, 1, 2, 3)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) self.assertEqual(len(feat), 4) self.assertEqual(feat[0].shape, (1, out_channels[0], 56, 56)) self.assertEqual(feat[1].shape, (1, out_channels[1], 28, 28)) self.assertEqual(feat[2].shape, (1, out_channels[2], 14, 14)) self.assertEqual(feat[3].shape, (1, out_channels[3], 7, 7)) def test_regnet_backbone(self): for arch_name, arch, out_channels in self.regnet_test_data: with self.subTest( arch_name=arch_name, arch=arch, out_channels=out_channels): self._test_regnet_backbone(arch_name, arch, out_channels) def _test_custom_arch(self, arch_name, arch, out_channels): # output the last feature map model = RegNet(arch) model.init_weights() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) self.assertIsInstance(feat, tuple) self.assertEqual(feat[-1].shape, (1, out_channels[-1], 7, 7)) # output feature map of all stages model = RegNet(arch, out_indices=(0, 1, 2, 3)) model.init_weights() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) self.assertEqual(len(feat), 4) self.assertEqual(feat[0].shape, (1, out_channels[0], 56, 56)) self.assertEqual(feat[1].shape, (1, out_channels[1], 28, 28)) self.assertEqual(feat[2].shape, (1, out_channels[2], 14, 14)) self.assertEqual(feat[3].shape, (1, out_channels[3], 7, 7)) def test_custom_arch(self): for arch_name, arch, out_channels in self.regnet_test_data: with self.subTest( arch_name=arch_name, arch=arch, out_channels=out_channels): self._test_custom_arch(arch_name, arch, out_channels) def test_exception(self): # arch must be a str or dict with self.assertRaises(TypeError): _ = RegNet(50)