_base_ = ['./yolox-pose_s_8xb32-300e_coco.py'] # model settings model = dict( init_cfg=dict(checkpoint='https://download.openmmlab.com/mmyolo/v0/yolox/' 'yolox_tiny_fast_8xb32-300e-rtmdet-hyp_coco/yolox_tiny_fast_' '8xb32-300e-rtmdet-hyp_coco_20230210_143637-4c338102.pth'), data_preprocessor=dict(batch_augments=[ dict( type='PoseBatchSyncRandomResize', random_size_range=(320, 640), size_divisor=32, interval=1) ]), backbone=dict( deepen_factor=0.33, widen_factor=0.375, ), neck=dict( deepen_factor=0.33, widen_factor=0.375, ), bbox_head=dict(head_module=dict(widen_factor=0.375))) # data settings img_scale = _base_.img_scale pre_transform = _base_.pre_transform train_pipeline_stage1 = [ *pre_transform, dict( type='Mosaic', img_scale=(img_scale), pad_val=114.0, pre_transform=pre_transform), dict( type='mmdet.RandomAffine', scaling_ratio_range=(0.75, 1.0), border=(-img_scale[0] // 2, -img_scale[1] // 2)), dict(type='mmdet.YOLOXHSVRandomAug'), dict(type='mmdet.RandomFlip', prob=0.5), dict( type='FilterDetPoseAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False), dict( type='PackDetPoseInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape')) ] test_pipeline = [ *pre_transform, dict(type='mmdet.Resize', scale=(416, 416), keep_ratio=True), dict( type='mmdet.Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict( type='PackDetPoseInputs', meta_keys=('id', 'img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip_indices')) ] train_dataloader = dict( batch_size=64, dataset=dict(pipeline=train_pipeline_stage1)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader