# Learn about Codecs In the keypoint detection task, depending on the algorithm, it is often necessary to generate targets in different formats, such as normalized coordinates, vectors and heatmaps, etc. Similarly, for the model outputs, a decoding process is required to transform them into coordinates. Encoding and decoding are closely related and inverse each other. In earlier versions of MMPose, encoding and decoding are implemented at different modules, making it less intuitive and unified. MMPose 1.0 introduced a new module **Codec** to integrate the encoding and decoding together in a modular and user-friendly form. Here is a diagram to show where the `Codec` is: ![codec-en](https://user-images.githubusercontent.com/13503330/187112635-c01f13d1-a07e-420f-be50-3b8818524dec.png) A typical codec consists of two parts: - Encoder - Decoder ### Encoder The encoder transforms the coordinates in the input image space into the needed target format: - Normalized Coordinates - One-dimensional Vectors - Gaussian Heatmaps For example, in the Regression-based method, the encoder will be: ```Python def encode(self, keypoints: np.ndarray, keypoints_visible: Optional[np.ndarray] = None) -> dict: """Encoding keypoints from input image space to normalized space. Args: keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D) keypoints_visible (np.ndarray): Keypoint visibilities in shape (N, K) Returns: dict: - keypoint_labels (np.ndarray): The normalized regression labels in shape (N, K, D) where D is 2 for 2d coordinates - keypoint_weights (np.ndarray): The target weights in shape (N, K) """ if keypoints_visible is None: keypoints_visible = np.ones(keypoints.shape[:2], dtype=np.float32) w, h = self.input_size valid = ((keypoints >= 0) & (keypoints <= [w - 1, h - 1])).all(axis=-1) & ( keypoints_visible > 0.5) keypoint_labels = (keypoints / np.array([w, h])).astype(np.float32) keypoint_weights = np.where(valid, 1., 0.).astype(np.float32) encoded = dict( keypoint_labels=keypoint_labels, keypoint_weights=keypoint_weights) return encoded ``` The encoded data is converted to Tensor format in `PackPoseInputs` and packed in `data_sample.gt_instance_labels` for model calls, which is generally used for loss calculation, as demonstrated by `loss()` in `RegressionHead`. ```Python def loss(self, inputs: Tuple[Tensor], batch_data_samples: OptSampleList, train_cfg: ConfigType = {}) -> dict: """Calculate losses from a batch of inputs and data samples.""" pred_outputs = self.forward(inputs) keypoint_labels = torch.cat( [d.gt_instance_labels.keypoint_labels for d in batch_data_samples]) keypoint_weights = torch.cat([ d.gt_instance_labels.keypoint_weights for d in batch_data_samples ]) # calculate losses losses = dict() loss = self.loss_module(pred_outputs, keypoint_labels, keypoint_weights.unsqueeze(-1)) losses.update(loss_kpt=loss) ### Omitted ### ``` ### Decoder The decoder transforms the model outputs into coordinates in the input image space, which is the opposite processing of the encoder. For example, in the Regression-based method, the decoder will be: ```Python def decode(self, encoded: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Decode keypoint coordinates from normalized space to input image space. Args: encoded (np.ndarray): Coordinates in shape (N, K, D) Returns: tuple: - keypoints (np.ndarray): Decoded coordinates in shape (N, K, D) - scores (np.ndarray): The keypoint scores in shape (N, K). It usually represents the confidence of the keypoint prediction """ if encoded.shape[-1] == 2: N, K, _ = encoded.shape normalized_coords = encoded.copy() scores = np.ones((N, K), dtype=np.float32) elif encoded.shape[-1] == 4: # split coords and sigma if outputs contain output_sigma normalized_coords = encoded[..., :2].copy() output_sigma = encoded[..., 2:4].copy() scores = (1 - output_sigma).mean(axis=-1) else: raise ValueError( 'Keypoint dimension should be 2 or 4 (with sigma), ' f'but got {encoded.shape[-1]}') w, h = self.input_size keypoints = normalized_coords * np.array([w, h]) return keypoints, scores ``` By default, the `decode()` method only performs decoding on a single instance. You can also implement the `batch_decode()` method to boost the decoding process. ## Common Usage The example below shows how to use a codec in your config: - Define the Codec - Generate Targets - Head ### Define the Codec Take the Regression-based method to generate normalized coordinates as an example, you can define a `codec` in your config as follows: ```Python codec = dict(type='RegressionLabel', input_size=(192, 256)) ``` ### Generate Targets In pipelines, A codec should be passed into `GenerateTarget` to work as the `encoder`: ```Python dict(type='GenerateTarget', encoder=codec) ``` ### Head In MMPose workflows, we decode the model outputs in `Head`, which requires a codec to work as the `decoder`: ```Python head=dict( type='RLEHead', in_channels=2048, num_joints=17, loss=dict(type='RLELoss', use_target_weight=True), decoder=codec ) ``` Here is the phase of a config file: ```Python # codec settings codec = dict(type='RegressionLabel', input_size=(192, 256)) ## definition ## # model settings model = dict( type='TopdownPoseEstimator', data_preprocessor=dict( type='PoseDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( type='ResNet', depth=50, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), ), neck=dict(type='GlobalAveragePooling'), head=dict( type='RLEHead', in_channels=2048, num_joints=17, loss=dict(type='RLELoss', use_target_weight=True), decoder=codec), ## Head ## test_cfg=dict( flip_test=True, shift_coords=True, )) # base dataset settings dataset_type = 'CocoDataset' data_mode = 'topdown' data_root = 'data/coco/' backend_args = dict(backend='local') # pipelines train_pipeline = [ dict(type='LoadImage', backend_args=backend_args), dict(type='GetBBoxCenterScale'), dict(type='RandomFlip', direction='horizontal'), dict(type='RandomHalfBody'), dict(type='RandomBBoxTransform'), dict(type='TopdownAffine', input_size=codec['input_size']), dict(type='GenerateTarget', encoder=codec), ## Generate Target ## dict(type='PackPoseInputs') ] test_pipeline = [ dict(type='LoadImage', backend_args=backend_args), dict(type='GetBBoxCenterScale'), dict(type='TopdownAffine', input_size=codec['input_size']), dict(type='PackPoseInputs') ] ```