_base_ = ['../../../_base_/default_runtime.py'] # runtime max_epochs = 270 stage2_num_epochs = 30 base_lr = 4e-3 train_cfg = dict(max_epochs=max_epochs, val_interval=10) randomness = dict(seed=21) # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05), paramwise_cfg=dict( norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True)) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0e-5, by_epoch=False, begin=0, end=1000), dict( # use cosine lr from 150 to 300 epoch type='CosineAnnealingLR', eta_min=base_lr * 0.05, begin=max_epochs // 2, end=max_epochs, T_max=max_epochs // 2, by_epoch=True, convert_to_iter_based=True), ] # automatically scaling LR based on the actual training batch size auto_scale_lr = dict(base_batch_size=512) # codec settings codec = dict( type='SimCCLabel', input_size=(288, 384), sigma=(6., 6.93), simcc_split_ratio=2.0, normalize=False, use_dark=False) # model settings model = dict( type='TopdownPoseEstimator', data_preprocessor=dict( type='PoseDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( _scope_='mmdet', type='CSPNeXt', arch='P5', expand_ratio=0.5, deepen_factor=1., widen_factor=1., out_indices=(4, ), channel_attention=True, norm_cfg=dict(type='SyncBN'), act_cfg=dict(type='SiLU'), init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint='https://download.openmmlab.com/mmpose/v1/projects/' 'rtmposev1/cspnext-l_udp-aic-coco_210e-256x192-273b7631_20230130.pth' # noqa )), head=dict( type='RTMCCHead', in_channels=1024, out_channels=133, input_size=codec['input_size'], in_featuremap_size=(9, 12), simcc_split_ratio=codec['simcc_split_ratio'], final_layer_kernel_size=7, gau_cfg=dict( hidden_dims=256, s=128, expansion_factor=2, dropout_rate=0., drop_path=0., act_fn='SiLU', use_rel_bias=False, pos_enc=False), loss=dict( type='KLDiscretLoss', use_target_weight=True, beta=10., label_softmax=True), decoder=codec), test_cfg=dict(flip_test=True, )) # base dataset settings dataset_type = 'CocoWholeBodyDataset' data_mode = 'topdown' data_root = 'data/coco/' backend_args = dict(backend='local') # backend_args = dict( # backend='petrel', # path_mapping=dict({ # f'{data_root}': 's3://openmmlab/datasets/detection/coco/', # f'{data_root}': 's3://openmmlab/datasets/detection/coco/' # })) # pipelines train_pipeline = [ dict(type='LoadImage', backend_args=backend_args), dict(type='GetBBoxCenterScale'), dict(type='RandomFlip', direction='horizontal'), dict(type='RandomHalfBody'), dict( type='RandomBBoxTransform', scale_factor=[0.6, 1.4], rotate_factor=80), dict(type='TopdownAffine', input_size=codec['input_size']), dict(type='mmdet.YOLOXHSVRandomAug'), dict( type='Albumentation', transforms=[ dict(type='Blur', p=0.1), dict(type='MedianBlur', p=0.1), dict( type='CoarseDropout', max_holes=1, max_height=0.4, max_width=0.4, min_holes=1, min_height=0.2, min_width=0.2, p=1.0), ]), dict(type='GenerateTarget', encoder=codec), dict(type='PackPoseInputs') ] val_pipeline = [ dict(type='LoadImage', backend_args=backend_args), dict(type='GetBBoxCenterScale'), dict(type='TopdownAffine', input_size=codec['input_size']), dict(type='PackPoseInputs') ] train_pipeline_stage2 = [ dict(type='LoadImage', backend_args=backend_args), dict(type='GetBBoxCenterScale'), dict(type='RandomFlip', direction='horizontal'), dict(type='RandomHalfBody'), dict( type='RandomBBoxTransform', shift_factor=0., scale_factor=[0.75, 1.25], rotate_factor=60), dict(type='TopdownAffine', input_size=codec['input_size']), dict(type='mmdet.YOLOXHSVRandomAug'), dict( type='Albumentation', transforms=[ dict(type='Blur', p=0.1), dict(type='MedianBlur', p=0.1), dict( type='CoarseDropout', max_holes=1, max_height=0.4, max_width=0.4, min_holes=1, min_height=0.2, min_width=0.2, p=0.5), ]), dict(type='GenerateTarget', encoder=codec), dict(type='PackPoseInputs') ] # data loaders train_dataloader = dict( batch_size=32, num_workers=10, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type=dataset_type, data_root=data_root, data_mode=data_mode, ann_file='annotations/coco_wholebody_train_v1.0.json', data_prefix=dict(img='train2017/'), pipeline=train_pipeline, )) val_dataloader = dict( batch_size=32, num_workers=10, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False, round_up=False), dataset=dict( type=dataset_type, data_root=data_root, data_mode=data_mode, ann_file='annotations/coco_wholebody_val_v1.0.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=val_pipeline, )) test_dataloader = val_dataloader # hooks default_hooks = dict( checkpoint=dict( save_best='coco-wholebody/AP', rule='greater', max_keep_ckpts=1)) custom_hooks = [ dict( type='EMAHook', ema_type='ExpMomentumEMA', momentum=0.0002, update_buffers=True, priority=49), dict( type='mmdet.PipelineSwitchHook', switch_epoch=max_epochs - stage2_num_epochs, switch_pipeline=train_pipeline_stage2) ] # evaluators val_evaluator = dict( type='CocoWholeBodyMetric', ann_file=data_root + 'annotations/coco_wholebody_val_v1.0.json') test_evaluator = val_evaluator