RTMDet (ArXiv 2022) ```bibtex @misc{lyu2022rtmdet, title={RTMDet: An Empirical Study of Designing Real-Time Object Detectors}, author={Chengqi Lyu and Wenwei Zhang and Haian Huang and Yue Zhou and Yudong Wang and Yanyi Liu and Shilong Zhang and Kai Chen}, year={2022}, eprint={2212.07784}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
WFLW (CVPR'2018) ```bibtex @inproceedings{wu2018look, title={Look at boundary: A boundary-aware face alignment algorithm}, author={Wu, Wayne and Qian, Chen and Yang, Shuo and Wang, Quan and Cai, Yici and Zhou, Qiang}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, pages={2129--2138}, year={2018} } ```
Results on WFLW dataset The model is trained on WFLW train. | Arch | Input Size | NME | ckpt | log | | :------------------------------------------------------------- | :--------: | :--: | :------------------------------------------------------------: | :------------------------------------------------------------: | | [pose_rtmpose_m](/configs/face_2d_keypoint/rtmpose/wflw/rtmpose-m_8xb64-60e_wflw-256x256.py) | 256x256 | 4.01 | [ckpt](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-m_simcc-wflw_pt-aic-coco_60e-256x256-dc1dcdcf_20230228.pth) | [log](https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-m_simcc-wflw_pt-aic-coco_60e-256x256-dc1dcdcf_20230228.json) |